Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
revprev | Admin | Jan 18'24 at 1:34 | +23 | ||
revcurprev | Admin | Jan 18'24 at 1:34 | +23 | ||
revcurprev | Admin | Jan 18'24 at 1:33 | +23 | ||
revcurprev | Admin | Jan 17'24 at 23:23 | +26 | m | |
revcurprev | Admin | Jan 15'24 at 19:26 | +338 | m | |
revcur | Admin | (Created page with "'''Answer: A''' <math>f_{x}(t)=-\frac{d}{d t} S_{x}(t)=-\frac{d}{d t}\left(e^{-\frac{B}{\ln c}\left(c^{x}\right)\left(c^{t}-1\right)}\right)</math> <math>=-e^{-\frac{B}{\ln c}\left(c^{x}\right)\left(c^{t}-1\right)} \cdot\left(-\frac{B}{\ln c} \cdot c^{x}\right) \cdot c^{t} \cdot \ln c</math> <math>=e^{-\frac{B}{\ln c}\left(c^{x}\right)\left(c^{t}-1\right)} \cdot B c^{x+t}</math> <math>=0.00027 \times 1.1^{x+t} \cdot e^{-\frac{0.00027}{\ln (1.1)}\left(1.1^{x}\right)\l...") | Jan 15'24 at 19:23 | +644 |