Diff selection: Mark the radio buttons of the revisions to compare and hit enter or the button at the bottom.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
Legend: (cur) = difference with latest revision, (prev) = difference with preceding revision, m = minor edit.
rev | Admin | (Created page with "'''Answer: E''' In general, the loss at issue random variable can be expressed as: <math display="block"> L=\bar{Z}_{x}-P \times \bar{Y}_{x}=\bar{Z}_{x}-P \times\left(\frac{1-\bar{Z}_{x}}{\delta}\right)=\bar{Z}_{x} \times\left(1+\frac{P}{\delta}\right)-\frac{P}{\delta} </math> Using actuarial equivalence to determine the premium rate: <math display="block"> P=\frac{\bar{A}_{x}}{\bar{a}_{x}}=\frac{0.3}{(1-0.3) / 0.07}=0.03 </math> <math>\operatorname{Var}(L)=\l...") | Jan 19'24 at 21:17 | +984 |