Exercise
ABy Admin
Jan 19'24
Answer
Answer: E
In general, the loss at issue random variable can be expressed as:
[[math]]
L=\bar{Z}_{x}-P \times \bar{Y}_{x}=\bar{Z}_{x}-P \times\left(\frac{1-\bar{Z}_{x}}{\delta}\right)=\bar{Z}_{x} \times\left(1+\frac{P}{\delta}\right)-\frac{P}{\delta}
[[/math]]
Using actuarial equivalence to determine the premium rate:
[[math]]
P=\frac{\bar{A}_{x}}{\bar{a}_{x}}=\frac{0.3}{(1-0.3) / 0.07}=0.03
[[/math]]
[math]\operatorname{Var}(L)=\left(1+\frac{P}{\delta}\right)^{2} \times \operatorname{Var}\left(\bar{Z}_{x}\right)=\left(1+\frac{0.03}{0.07}\right)^{2} \times \operatorname{Var}\left(\bar{Z}_{x}\right)=0.18[/math]
[math]\operatorname{Var}\left(\bar{Z}_{x}\right)=\frac{0.18}{\left(1+\frac{0.03}{0.07}\right)^{2}}=0.088[/math]
[math]\operatorname{Var}\left(L^{*}\right)=\left(1+\frac{P^{*}}{\delta}\right)^{2} \times \operatorname{Var}\left(\bar{Z}_{x}\right)=\left(1+\frac{0.06}{0.07}\right)^{2}(0.088)=0.304[/math]