exercise:D1cdb3fbcc: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Choose a number <math>U</math> from the interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density for the random variables <ul><li> <math>Y = 1/(U + 1)</math>. </li> <li> <math>Y = \log(U + 1)</math>. </l...") |
No edit summary |
||
Line 1: | Line 1: | ||
Choose a number <math>U</math> from the interval <math>[0,1]</math> with uniform | |||
distribution. Find the cumulative distribution and density for the random variables | distribution. Find the cumulative distribution and density for the random variables | ||
<ul><li> <math>Y = 1/(U + 1)</math>. | <ul style="list-style-type:lower-alpha"><li> <math>Y = 1/(U + 1)</math>. | ||
</li> | </li> | ||
<li> <math>Y = \log(U + 1)</math>. | <li> <math>Y = \log(U + 1)</math>. | ||
</li> | </li> | ||
</ul> | </ul> |
Latest revision as of 00:44, 14 June 2024
Choose a number [math]U[/math] from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density for the random variables
- [math]Y = 1/(U + 1)[/math].
- [math]Y = \log(U + 1)[/math].