exercise:D1cdb3fbcc: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Choose a number <math>U</math> from the interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density for the random variables <ul><li> <math>Y = 1/(U + 1)</math>. </li> <li> <math>Y = \log(U + 1)</math>. </l...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Choose a number <math>U</math> from the interval <math>[0,1]</math> with uniform
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Choose a number <math>U</math> from the interval <math>[0,1]</math> with uniform
distribution.  Find the cumulative distribution and density for the random variables
distribution.  Find the cumulative distribution and density for the random variables
<ul><li> <math>Y = 1/(U + 1)</math>.
<ul style="list-style-type:lower-alpha"><li> <math>Y = 1/(U + 1)</math>.
</li>
</li>
<li> <math>Y = \log(U + 1)</math>.
<li> <math>Y = \log(U + 1)</math>.
</li>
</li>
</ul>
</ul>

Latest revision as of 00:44, 14 June 2024

Choose a number [math]U[/math] from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density for the random variables

  • [math]Y = 1/(U + 1)[/math].
  • [math]Y = \log(U + 1)[/math].