exercise:F39cb86b1c: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> A number <math>U</math> is chosen at random in the interval <math>[0,1]</math>. Find the probability that <ul><li> <math>R = U^2 < 1/4</math>. </li> <li> <math>S = U(1 - U) < 1/4</math>. </li> <li> <math>T = U/(1 - U) < 1/4</math>. </li> </ul>")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
A number <math>U</math> is chosen at random in the interval
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> A number <math>U</math> is chosen at random in the interval
<math>[0,1]</math>.  Find the probability that
<math>[0,1]</math>.  Find the probability that
<ul><li> <math>R = U^2  <  1/4</math>.
<ul style="list-style-type:lower-alpha"><li> <math>R = U^2  <  1/4</math>.
</li>
</li>
<li> <math>S = U(1 - U)  <  1/4</math>.
<li> <math>S = U(1 - U)  <  1/4</math>.

Latest revision as of 01:03, 14 June 2024

A number [math]U[/math] is chosen at random in the interval [math][0,1][/math]. Find the probability that

  • [math]R = U^2 \lt 1/4[/math].
  • [math]S = U(1 - U) \lt 1/4[/math].
  • [math]T = U/(1 - U) \lt 1/4[/math].