exercise:3b2a17f200: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable uniformly distributed over <math>[c,d]</math>, and let <math>Y = aX + b</math>. For what choice of <math>a</math> and <math>b</math> is <math>Y</math> uniformly distributed over <math>[0,1]</math>?")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable uniformly distributed over <math>[c,d]</math>, and let <math>Y = aX + b</math>.  For what choice of <math>a</math> and <math>b</math> is <math>Y</math> uniformly distributed over <math>[0,1]</math>?
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable uniformly distributed over
<math>[c,d]</math>, and let
<math>Y = aX + b</math>.  For what choice of <math>a</math> and <math>b</math> is <math>Y</math> uniformly distributed over
<math>[0,1]</math>?

Latest revision as of 01:05, 14 June 2024

Let [math]X[/math] be a random variable uniformly distributed over [math][c,d][/math], and let [math]Y = aX + b[/math]. For what choice of [math]a[/math] and [math]b[/math] is [math]Y[/math] uniformly distributed over [math][0,1][/math]?