exercise:95059a0f62: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>U</math> be a uniformly distributed random variable on <math>[0,1]</math>. What is the probability that the equation </math> x^2 + 4Ux + 1 = 0 <math display="block"> has two distinct real roots $x_1$ and <math>x_2</math>?")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>U</math> be a uniformly distributed random variable on <math>[0,1]</math>.  
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>U</math> be a uniformly distributed random variable on <math>[0,1]</math>.  
What is the probability that the equation
What is the probability that the equation
<math display = "block">
x^2 + 4Ux + 1 = 0
</math>
</math>
x^2 + 4Ux + 1 = 0
has two distinct real roots <math>x_1</math> and <math>x_2</math>?
 
<math display="block">
has two distinct real roots $x_1$ and <math>x_2</math>?

Latest revision as of 01:12, 14 June 2024

Let [math]U[/math] be a uniformly distributed random variable on [math][0,1][/math]. What is the probability that the equation

[[math]] x^2 + 4Ux + 1 = 0 [[/math]]

has two distinct real roots [math]x_1[/math] and [math]x_2[/math]?