exercise:41296f74f6: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Find <math>E(X^Y)</math>, where <math>X</math> and <math>Y</math> are independent random variables which are uniform on <math>[0, 1]</math>. Then verify your answer by simulation.")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Find <math>E(X^Y)</math>, where <math>X</math> and <math>Y</math> are independent random variables which are uniform on <math>[0, 1]</math>.  Then verify your answer by simulation.
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Find <math>E(X^Y)</math>, where <math>X</math> and <math>Y</math> are independent random
variables which are uniform on <math>[0, 1]</math>.  Then verify your answer by simulation.

Latest revision as of 21:38, 14 June 2024

Find [math]E(X^Y)[/math], where [math]X[/math] and [math]Y[/math] are independent random variables which are uniform on [math][0, 1][/math]. Then verify your answer by simulation.