exercise:0876775b21: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be random variables. The ''covariance'' <math>\rm {Cov}(X,Y)</math> is defined by (see Exercise \ref{sec 6.2}.) <math display="block"> \rm {cov}(X,Y) = E ((X - \mu(X))(Y -...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> and <math>Y</math> be random variables.  The  ''covariance'' <math>\rm {Cov}(X,Y)</math> is defined by (see [[exercise:Afee895e05|Exercise]])
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> and <math>Y</math> be random variables.  The  ''covariance''
<math>\rm {Cov}(X,Y)</math> is defined by (see Exercise \ref{sec [[guide:C631488f9a#exer 6.2.24 |6.2}.]])


<math display="block">
<math display="block">
\rm {cov}(X,Y) = E ((X - \mu(X))(Y - \mu(Y)) )\ .
\rm {cov}(X,Y) = E ((X - \mu(X))(Y - \mu(Y)) )\ .
</math>
</math>
<ul><li> Show that <math>\rm {cov}(X,Y) = E(XY) - E(X)E(Y)</math>.
<ul style="list-style-type:lower-alpha"><li> Show that <math>\rm {cov}(X,Y) = E(XY) - E(X)E(Y)</math>.
</li>
</li>
<li> Using (a), show that <math>{\rm cov}(X,Y) = 0</math>, if
<li> Using (a), show that <math>{\rm cov}(X,Y) = 0</math>, if

Latest revision as of 22:43, 14 June 2024

Let [math]X[/math] and [math]Y[/math] be random variables. The covariance [math]\rm {Cov}(X,Y)[/math] is defined by (see Exercise)

[[math]] \rm {cov}(X,Y) = E ((X - \mu(X))(Y - \mu(Y)) )\ . [[/math]]

  • Show that [math]\rm {cov}(X,Y) = E(XY) - E(X)E(Y)[/math].
  • Using (a), show that [math]{\rm cov}(X,Y) = 0[/math], if [math]X[/math] and [math]Y[/math] are independent. (Caution: the converse is not always true.)
  • Show that [math]V(X + Y) = V(X) + V(Y) + 2{\rm cov}(X,Y)[/math].