exercise:C2036c7349: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable and define the '' standardized version'' <math>X^*</math> of <math>X</math> by: <math display="block"> X^* = \frac {X - \mu}\sigma\ . </math> <ul><li> Show that <math>P(|X^*| \geq a) \leq 1/a^2</...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable and define the ''standardized version'' <math>X^*</math> of <math>X</math> by:
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable and define the ''
standardized version'' <math>X^*</math> of <math>X</math> by:


<math display="block">
<math display="block">
X^* = \frac {X - \mu}\sigma\ .
X^* = \frac {X - \mu}\sigma\ .
</math>
</math>
<ul><li> Show that <math>P(|X^*| \geq a) \leq 1/a^2</math>.
<ul style="list-style-type:lower-alpha"><li> Show that <math>P(|X^*| \geq a) \leq 1/a^2</math>.
</li>
</li>
<li> If <math>X</math> is the random variable of Exercise [[exercise:63ec956b0e |Exercise]], find
<li> If <math>X</math> is the random variable of [[exercise:63ec956b0e |Exercise]], find
bounds for <math>P(|X^*| \geq 2)</math>, <math>P(|X^*| \geq 5)</math>, and <math>P(|X^*| \geq 9)</math>.
bounds for <math>P(|X^*| \geq 2)</math>, <math>P(|X^*| \geq 5)</math>, and <math>P(|X^*| \geq 9)</math>.
</li>
</li>
</ul>
</ul>

Latest revision as of 22:49, 14 June 2024

Let [math]X[/math] be a continuous random variable and define the standardized version [math]X^*[/math] of [math]X[/math] by:

[[math]] X^* = \frac {X - \mu}\sigma\ . [[/math]]

  • Show that [math]P(|X^*| \geq a) \leq 1/a^2[/math].
  • If [math]X[/math] is the random variable of Exercise, find bounds for [math]P(|X^*| \geq 2)[/math], [math]P(|X^*| \geq 5)[/math], and [math]P(|X^*| \geq 9)[/math].