exercise:5cecde9659: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Explain how you can generate a random variable whose cumulative distribution function is </math> F(x) = \left \{ \begin{array}{ll} 0, & \mbox{if <math>x < 0</math>}, \\ x^2, & \mbox{if <math>0 \leq x \leq 1</math>}, \\...") |
No edit summary |
||
Line 1: | Line 1: | ||
Explain how you can generate a random variable whose cumulative distribution function is | |||
<math display="block"> | |||
cumulative distribution function is | |||
< | |||
F(x) = \left \{ \begin{array}{ll} | F(x) = \left \{ \begin{array}{ll} | ||
0, & \mbox{if | 0, & \mbox{if $x < 0$}, \\ | ||
x^2, & \mbox{if | x^2, & \mbox{if $0 \leq x \leq 1$}, \\ | ||
1, & \mbox{if | 1, & \mbox{if $x > 1.$} | ||
\end{array} | \end{array} | ||
\right. | \right. | ||
<math | </math> |
Latest revision as of 09:00, 19 June 2024
Explain how you can generate a random variable whose cumulative distribution function is
[[math]]
F(x) = \left \{ \begin{array}{ll}
0, & \mbox{if $x \lt 0$}, \\
x^2, & \mbox{if $0 \leq x \leq 1$}, \\
1, & \mbox{if $x \gt 1.$}
\end{array}
\right.
[[/math]]