exercise:242a63cd0b: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with density function </math> f_X(x) = \left \{ \begin{array}{ll} cx(1 - x), & \mbox{if <math>0 < x < 1</math>}, \\ 0, & \mbox{otherwise.} \end{arra...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with density function
\newcommand{\NA}{{\rm NA}}
<math display="block">
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with density function
</math>
f_X(x) = \left \{ \begin{array}{ll}
f_X(x) = \left \{ \begin{array}{ll}
               cx(1 - x), & \mbox{if <math>0  <  x  <  1</math>}, \\
               cx(1 - x), & \mbox{if $0  <  x  <  1$}, \\
                       0, & \mbox{otherwise.}
                       0, & \mbox{otherwise.}
                 \end{array}
                 \end{array}
         \right.
         \right.
</math>


<math display="block">
<ul style="list-style-type:lower-alpha"><li> What is the value of <math>c</math>?
<ul><li> What is the value of $c$?
</li>
</li>
<li> What is the cumulative distribution function <math>F_X</math> for <math>X</math>?
<li> What is the cumulative distribution function <math>F_X</math> for <math>X</math>?

Latest revision as of 09:10, 19 June 2024

Let [math]X[/math] be a random variable with density function

[[math]] f_X(x) = \left \{ \begin{array}{ll} cx(1 - x), & \mbox{if $0 \lt x \lt 1$}, \\ 0, & \mbox{otherwise.} \end{array} \right. [[/math]]

  • What is the value of [math]c[/math]?
  • What is the cumulative distribution function [math]F_X[/math] for [math]X[/math]?
  • What is the probability that [math]X \lt 1/4[/math]?