excans:Ff1d443258: Difference between revisions

From Stochiki
(Created page with "'''Solution: B''' Let Y be the reimbursement. Then, G(115) = P[Y < 115 | X > 20]. For Y to be 115, the costs must be above 120 (up to 120 accounts for a reimbursement of 100)...")
 
mNo edit summary
 
Line 6: Line 6:
\begin{align*}
\begin{align*}
\operatorname{P}[X \leq 150 | X > 20] &= \frac{\operatorname{P}[X \leq 150] - \operatorname{P}[ X \leq 20]}{\operatorname{P}[X \leq 20]} \\ &
\operatorname{P}[X \leq 150 | X > 20] &= \frac{\operatorname{P}[X \leq 150] - \operatorname{P}[ X \leq 20]}{\operatorname{P}[X \leq 20]} \\ &
= \frac{1-e^{150/100}-1 + e^{-20/100}}{1-1 + e^{-20/100}} \\
= \frac{1-e^{-150/100}-1 + e^{-20/100}}{1-1 + e^{-20/100}} \\
&= \frac{-e^{-1.5} + e^{-0.2}}{e^{-0.2}} \\
&= \frac{-e^{-1.5} + e^{-0.2}}{e^{-0.2}} \\
&= 1-e^{-1.3} \\
&= 1-e^{-1.3} \\

Latest revision as of 02:38, 3 July 2024

Solution: B

Let Y be the reimbursement. Then, G(115) = P[Y < 115 | X > 20]. For Y to be 115, the costs must be above 120 (up to 120 accounts for a reimbursement of 100). The extra 15 requires 30 in additional costs. Therefore, we need

[[math]] \begin{align*} \operatorname{P}[X \leq 150 | X \gt 20] &= \frac{\operatorname{P}[X \leq 150] - \operatorname{P}[ X \leq 20]}{\operatorname{P}[X \leq 20]} \\ & = \frac{1-e^{-150/100}-1 + e^{-20/100}}{1-1 + e^{-20/100}} \\ &= \frac{-e^{-1.5} + e^{-0.2}}{e^{-0.2}} \\ &= 1-e^{-1.3} \\ &= 0.727. \end{align*} [[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.