exercise:25a3f1d194: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...")
 
No edit summary
 
Line 43: Line 43:
where it will be assumed that the unit of
where it will be assumed that the unit of
distance in the plane is <math>1</math> foot.
distance in the plane is <math>1</math> foot.
<ul style{{=}}"list-style-type:lower-alpha"><li></li>
<ul style{{=}}"list-style-type:lower-alpha">
<li>lab{10.5.2a}
<li>
Identify and draw the curve which the particle traces
Identify and draw the curve which the particle traces
out during its interval of motion.</li>
out during its interval of motion.</li>
Line 51: Line 51:
<math>t=0</math>, <math>t=1</math>, and <math>t=2</math>.
<math>t=0</math>, <math>t=1</math>, and <math>t=2</math>.
Show these positions and draw the velocity
Show these positions and draw the velocity
vectors in the figure in part \ref{ex10.5.2a}.</li>
vectors in the figure in part (a).</li>
<li>Compute the acceleration <math>\vec a(t)</math>.
<li>Compute the acceleration <math>\vec a(t)</math>.
Find the times and corresponding positions
Find the times and corresponding positions
(if any) when the acceleration and velocity vectors
(if any) when the acceleration and velocity vectors
are perpendicular to each other.</li>
are perpendicular to each other.</li>
<li></li>
<li>
<li>lab{10.5.2d}
Write a definite integral equal to the distance (in feet)
Write a definite integral equal to the distance (in feet)
which the particle moves during the interval
which the particle moves during the interval
from <math>t=0</math> to <math>t=2</math> seconds.</li>
from <math>t=0</math> to <math>t=2</math> seconds.</li>
<li>Evaluate the integral in \ref{ex10.5.2d}.</li>
<li>Evaluate the integral in (d).</li>
</ul>
</ul>

Latest revision as of 23:56, 25 November 2024

[math] \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow} \newcommand{\ddxof}[1]{\frac{d #1}{d x}} \newcommand{\ddx}{\frac{d}{dx}} \newcommand{\ddt}{\frac{d}{dt}} \newcommand{\dydx}{\ddxof y} \newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}} \newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}} \newcommand{\dist}{\mathrm{distance}} \newcommand{\arccot}{\mathrm{arccot\:}} \newcommand{\arccsc}{\mathrm{arccsc\:}} \newcommand{\arcsec}{\mathrm{arcsec\:}} \newcommand{\arctanh}{\mathrm{arctanh\:}} \newcommand{\arcsinh}{\mathrm{arcsinh\:}} \newcommand{\arccosh}{\mathrm{arccosh\:}} \newcommand{\sech}{\mathrm{sech\:}} \newcommand{\csch}{\mathrm{csch\:}} \newcommand{\conj}[1]{\overline{#1}} \newcommand{\mathds}{\mathbb} [/math]

A particle moves in the plane during the time interval from [math]t=0[/math] to [math]t=2[/math] seconds. Its position at any time during this interval is given by the parametrization

[[math]] P(t) = (t,t^2-t) , [[/math]]

where it will be assumed that the unit of distance in the plane is [math]1[/math] foot.

  • Identify and draw the curve which the particle traces out during its interval of motion.
  • Compute the velocity vector [math]\vec v(t)[/math]. Find the position, velocity, and speed at [math]t=0[/math], [math]t=1[/math], and [math]t=2[/math]. Show these positions and draw the velocity vectors in the figure in part (a).
  • Compute the acceleration [math]\vec a(t)[/math]. Find the times and corresponding positions (if any) when the acceleration and velocity vectors are perpendicular to each other.
  • Write a definite integral equal to the distance (in feet) which the particle moves during the interval from [math]t=0[/math] to [math]t=2[/math] seconds.
  • Evaluate the integral in (d).