exercise:9b2dcb9f05: Difference between revisions
(Created page with "<div class="d-none"> <math> \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SS...") |
mNo edit summary |
||
Line 32: | Line 32: | ||
</div> | </div> | ||
Consider the linear regression model <math>Y_i = X_i \beta + \varepsilon_i</math> with the <math>\varepsilon_i</math> i.i.d. following a standard normal law <math>\mathcal{N}(0, 1)</math>. Data on the response and covariate are available: <math>\{(y_i, x_i)\}_{i=1}^8 = \{ (-5, -2), (0, -1), \\ (-4, -1), (-2, -1), (0, 0), (3,1), (5,2), (3,2) \}</math>. | |||
<ul style="list-style-type:lower-alpha"><li> | <ul style="list-style-type:lower-alpha"><li> Assume a zero-centered normal prior on <math>\beta</math>. What variance, i.e. which <math>\sigma_{\beta}^2 \in \mathbb{R}_{>0}</math>, of this prior yields a mean posterior <math>\mathbb{E}(\beta \, | \, \{(y_i, x_i)\}_{i=1}^8, \sigma_{\beta}^2)</math> equal to <math>1.4</math>? | ||
</li> | </li> | ||
<li> | <li> Assume a non-zero centered normal prior. What (mean, variance)-combinations for the prior will yield a mean posterior estimate <math>\hat{\beta} = 2</math>? | ||
</li> | </li> | ||
</ul> | </ul> | ||
Latest revision as of 22:44, 24 June 2023
[math] \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SSigma{\bf \Sigma} \def\ttheta{\bf \theta} \def\aalpha{\bf \alpha} \def\ddelta{\bf \delta} \def\eeta{\bf \eta} \def\llambda{\bf \lambda} \def\ggamma{\bf \gamma} \def\nnu{\bf \nu} \def\vvarepsilon{\bf \varepsilon} \def\mmu{\bf \mu} \def\nnu{\bf \nu} \def\ttau{\bf \tau} \def\SSigma{\bf \Sigma} \def\TTheta{\bf \Theta} \def\XXi{\bf \Xi} \def\PPi{\bf \Pi} \def\GGamma{\bf \Gamma} \def\DDelta{\bf \Delta} \def\ssigma{\bf \sigma} \def\UUpsilon{\bf \Upsilon} \def\PPsi{\bf \Psi} \def\PPhi{\bf \Phi} \def\LLambda{\bf \Lambda} \def\OOmega{\bf \Omega} [/math]
Consider the linear regression model [math]Y_i = X_i \beta + \varepsilon_i[/math] with the [math]\varepsilon_i[/math] i.i.d. following a standard normal law [math]\mathcal{N}(0, 1)[/math]. Data on the response and covariate are available: [math]\{(y_i, x_i)\}_{i=1}^8 = \{ (-5, -2), (0, -1), \\ (-4, -1), (-2, -1), (0, 0), (3,1), (5,2), (3,2) \}[/math].
- Assume a zero-centered normal prior on [math]\beta[/math]. What variance, i.e. which [math]\sigma_{\beta}^2 \in \mathbb{R}_{\gt0}[/math], of this prior yields a mean posterior [math]\mathbb{E}(\beta \, | \, \{(y_i, x_i)\}_{i=1}^8, \sigma_{\beta}^2)[/math] equal to [math]1.4[/math]?
- Assume a non-zero centered normal prior. What (mean, variance)-combinations for the prior will yield a mean posterior estimate [math]\hat{\beta} = 2[/math]?