excans:61ffade529: Difference between revisions
From Stochiki
(Created page with "'''Answer: A''' <math>{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=>\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=>0.4=e^{-\beta t^{3} / 3 b^{10}}</math> <math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>") |
mNo edit summary |
||
Line 1: | Line 1: | ||
'''Answer: | '''Answer: C''' | ||
<math>{ | Let <math>l_{80}=1000 \Rightarrow l_{81}=960 \Rightarrow l_{82}=902.4</math> | ||
<math | <math display = "block">\textrm{Answer} \, =\frac{l_{81.1}-l_{81.6}}{l_{80.6}}=\frac{(960)^{0.9}(902.4)^{0.1}-(960)^{0.4}(902.4)^{0.6}}{(0.4)(1000)+(0.6)(960)}=0.02978</math> |
Revision as of 22:04, 15 January 2024
Answer: C
Let [math]l_{80}=1000 \Rightarrow l_{81}=960 \Rightarrow l_{82}=902.4[/math]
[[math]]\textrm{Answer} \, =\frac{l_{81.1}-l_{81.6}}{l_{80.6}}=\frac{(960)^{0.9}(902.4)^{0.1}-(960)^{0.4}(902.4)^{0.6}}{(0.4)(1000)+(0.6)(960)}=0.02978[[/math]]