exercise:5e54b50857: Difference between revisions

From Stochiki
(Created page with "You are given that mortality follows Makeham's Law with the following parameters: <math display="block"> \begin{array}{ll} \text { i) } & A=0.004 \\ \text { ii) } & B=0.00003 \\ \text { iii) } & c=1.1 \end{array} </math> Let <math>L_{15}</math> be the random variable representing the number of lives alive at the end of 15 years if there are 10,000 lives age 50 at time 0 . Calculate <math>\operatorname{Var}\left[L_{15}\right]</math>. <ul class="mw-excansopts"><li>...")
 
No edit summary
Line 17: Line 17:


<ul class="mw-excansopts"><li> 1,317</li><li> 1,328</li><li> 1,339</li><li> 1,350</li><li> 1,361</li></ul>
<ul class="mw-excansopts"><li> 1,317</li><li> 1,328</li><li> 1,339</li><li> 1,350</li><li> 1,361</li></ul>
{{soacopyright | 2024 }}

Revision as of 23:29, 17 January 2024

You are given that mortality follows Makeham's Law with the following parameters:

[[math]] \begin{array}{ll} \text { i) } & A=0.004 \\ \text { ii) } & B=0.00003 \\ \text { iii) } & c=1.1 \end{array} [[/math]]


Let [math]L_{15}[/math] be the random variable representing the number of lives alive at the end of 15 years if there are 10,000 lives age 50 at time 0 .

Calculate [math]\operatorname{Var}\left[L_{15}\right][/math].

  • 1,317
  • 1,328
  • 1,339
  • 1,350
  • 1,361

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.