exercise:5e54b50857: Difference between revisions
From Stochiki
(Created page with "You are given that mortality follows Makeham's Law with the following parameters: <math display="block"> \begin{array}{ll} \text { i) } & A=0.004 \\ \text { ii) } & B=0.00003 \\ \text { iii) } & c=1.1 \end{array} </math> Let <math>L_{15}</math> be the random variable representing the number of lives alive at the end of 15 years if there are 10,000 lives age 50 at time 0 . Calculate <math>\operatorname{Var}\left[L_{15}\right]</math>. <ul class="mw-excansopts"><li>...") |
No edit summary |
||
Line 17: | Line 17: | ||
<ul class="mw-excansopts"><li> 1,317</li><li> 1,328</li><li> 1,339</li><li> 1,350</li><li> 1,361</li></ul> | <ul class="mw-excansopts"><li> 1,317</li><li> 1,328</li><li> 1,339</li><li> 1,350</li><li> 1,361</li></ul> | ||
{{soacopyright | 2024 }} |
Revision as of 23:29, 17 January 2024
You are given that mortality follows Makeham's Law with the following parameters:
[[math]]
\begin{array}{ll}
\text { i) } & A=0.004 \\
\text { ii) } & B=0.00003 \\
\text { iii) } & c=1.1
\end{array}
[[/math]]
Let [math]L_{15}[/math] be the random variable representing the number of lives alive at the end of 15 years if there are 10,000 lives age 50 at time 0 .
Calculate [math]\operatorname{Var}\left[L_{15}\right][/math].
- 1,317
- 1,328
- 1,339
- 1,350
- 1,361