excans:9c984f9ad7: Difference between revisions

From Stochiki
(Created page with "'''Answer: B''' <math>E(N)=1000\left({ }_{40} p_{35}+{ }_{40} p_{45}\right)=1000\left(\frac{85,203.5}{99,556.7}+\frac{61,184.9}{99,033.9}\right)=1473.65</math> <math>\operatorname{Var}(N)=1000_{40} p_{35}\left(1-{ }_{40} p_{35}\right)+1000_{40} p_{45}\left(1-{ }_{40} p_{45}\right)=359.50</math> Since <math>1473.65+1.645 \sqrt{359.50}=1504.84</math> <math>N=1505</math>")
 
No edit summary
Line 8: Line 8:


<math>N=1505</math>
<math>N=1505</math>
{{soacopyright|2024}}

Revision as of 02:33, 18 January 2024

Answer: B

[math]E(N)=1000\left({ }_{40} p_{35}+{ }_{40} p_{45}\right)=1000\left(\frac{85,203.5}{99,556.7}+\frac{61,184.9}{99,033.9}\right)=1473.65[/math]

[math]\operatorname{Var}(N)=1000_{40} p_{35}\left(1-{ }_{40} p_{35}\right)+1000_{40} p_{45}\left(1-{ }_{40} p_{45}\right)=359.50[/math]

Since [math]1473.65+1.645 \sqrt{359.50}=1504.84[/math]

[math]N=1505[/math]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.