excans:B4a44e0a2b: Difference between revisions

From Stochiki
mNo edit summary
No edit summary
Line 47: Line 47:


{{soacopyright | 2024 }}
{{soacopyright | 2024 }}
{{soacopyright|2024}}

Revision as of 01:33, 18 January 2024

Answer: D

This is a mixed distribution for the population, since the vaccine will apply to all once available.

Available?

[math](A)[/math] [math]\operatorname{Pr}(A)[/math] [math]{ }_{2} p \mid A[/math] [math]E(S \mid A)[/math] [math]\operatorname{Var}(S \mid A)[/math] [math]E\left(S^{2} \mid A\right)[/math]
Yes 0.2 0.9702 97,020 2,891 [math]9,412,883,291[/math]
No 0.8 0.9604 96,040 3,803 [math]9,223,685,403[/math]
[math]E(S)[/math] [math]E\left(S^{2}\right)[/math]
96,236 [math]9,261,524,981[/math]
[math]\operatorname{Var}(S)[/math] 157,285
[math]S D(S)[/math] 397

As an example, the formulas for the "No" row are

[math]\operatorname{Pr}(\mathrm{No})=1-0.2=0.8[/math]

[math]{ }_{2} p[/math] given [math]\mathrm{No}=(0.98[/math] during year 1[math])(0.98[/math] during year 2[math])=0.9604[/math]

[math]E(S \mid \mathrm{No}), \operatorname{Var}(S \mid[/math] No [math])[/math] and [math]E\left(S^{2} \mid\right.[/math] No [math])[/math] are just binomial, [math]n=100,000 ; \mathrm{p}([/math] success [math])=0.9604[/math]

[math]E(S), E\left(S^{2}\right)[/math] are weighted averages,

[math]\operatorname{Var}(S)=E\left(S^{2}\right)-E(S)^{2}[/math]

Or, by the conditional variance formula:

[[math]] \begin{aligned} \operatorname{Var}(S) & =\operatorname{Var}[E(S \mid A)]+E[\operatorname{Var}(S \mid A)] \\ & =0.2(0.8)(97,020-96,040)^{2}+0.2(2,891)+0.8(3,803) \\ & =153,664+3,621=157,285 \\ \operatorname{StdDev}(S) & =397 \end{aligned} [[/math]]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.