excans:B8d33a4aef: Difference between revisions

From Stochiki
(Created page with "'''Answer: B''' Under constant force over each year of age, <math>l_{x+k}=\left(l_{x}\right)^{1-k}\left(l_{x+1}\right)^{k}</math> for <math>x</math> an integer and <math>0 \leq k \leq 1</math>. <math display="block"> \begin{aligned} & { }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}} \\ & l_{[60]+0.75}=(80,000)^{0.25}(79,000)^{0.75}=79,249 \\ & l_{[60]+2.75}=(77,000)^{0.25}(74,000)^{0.75}=74,739 \\ & l_{[60]+5.75}=(67,000)^{0.25}(65,000)^{...")
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 15: Line 15:




<math>{ }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}}=\frac{74,739-65,494}{79,249}=0.11679</math>
<math display = "block">{ }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}}=\frac{74,739-65,494}{79,249}=0.11679</math>


<math>1000_{2 \mid 3} q_{[60]+0.75}=116.8</math>
<math display = "block">1000_{2 \mid 3} q_{[60]+0.75}=116.8</math>
 
{{soacopyright|2024}}
 
{{soacopyright|2024}}
 
{{soacopyright|2024}}

Latest revision as of 02:34, 18 January 2024

Answer: B

Under constant force over each year of age, [math]l_{x+k}=\left(l_{x}\right)^{1-k}\left(l_{x+1}\right)^{k}[/math] for [math]x[/math] an integer and [math]0 \leq k \leq 1[/math].

[[math]] \begin{aligned} & { }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}} \\ & l_{[60]+0.75}=(80,000)^{0.25}(79,000)^{0.75}=79,249 \\ & l_{[60]+2.75}=(77,000)^{0.25}(74,000)^{0.75}=74,739 \\ & l_{[60]+5.75}=(67,000)^{0.25}(65,000)^{0.75}=65,494 \end{aligned} [[/math]]


[[math]]{ }_{2 \mid 3} q_{[60]+0.75}=\frac{l_{[60]+2.75}-l_{[60]+5.75}}{l_{[60]+0.75}}=\frac{74,739-65,494}{79,249}=0.11679[[/math]]

[[math]]1000_{2 \mid 3} q_{[60]+0.75}=116.8[[/math]]

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.