excans:61ffade529: Difference between revisions

From Stochiki
(Created page with "'''Answer: A''' <math>{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=>\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=>0.4=e^{-\beta t^{3} / 3 b^{10}}</math> <math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>")
 
No edit summary
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''Answer: A'''
'''Answer: C'''


<math>{ }_{10} p_{x}=\frac{l_{x+10}}{l_{x}}=e^{-\int_{0}^{10} \mu_{x+1} \cdot d t}=>\frac{400}{1000}=e^{-\int_{0}^{10} \beta t^{2} \cdot d t}=>0.4=e^{-\beta t^{3} / 3 b^{10}}</math>
Let <math>l_{80}=1000 \Rightarrow l_{81}=960 \Rightarrow l_{82}=902.4</math>


<math>==>0.4=e^{-\beta \cdot 100^{3} / 3}==>\ln (0.4)=-\beta\left(\frac{1000}{3}\right)==>\beta=-\ln (0.4)(.003)=0.0027489</math>
<math display = "block">\textrm{Answer} \, =\frac{l_{81.1}-l_{81.6}}{l_{80.6}}=\frac{(960)^{0.9}(902.4)^{0.1}-(960)^{0.4}(902.4)^{0.6}}{(0.4)(1000)+(0.6)(960)}=0.02978</math>
 
The value for <math>l_{80}</math> is arbitrary. Any other starting value gives the same result.
 
Another form for the survivors between 81 and 82 would be
 
<math>\mu=-\ln (902 / 960)=0.0095833</math>;
 
<math>l_{81.1}=960 \times e^{-0.1 \times 0.0095833}=959.08 ;</math>
 
<math>l_{81.6}=960 \times e^{-0.6 \times 0.0095833}=954.496</math>.
 
{{soacopyright | 2024 }}
 
{{soacopyright|2024}}
 
{{soacopyright|2024}}
 
{{soacopyright|2024}}

Latest revision as of 01:34, 18 January 2024

Answer: C

Let [math]l_{80}=1000 \Rightarrow l_{81}=960 \Rightarrow l_{82}=902.4[/math]

[[math]]\textrm{Answer} \, =\frac{l_{81.1}-l_{81.6}}{l_{80.6}}=\frac{(960)^{0.9}(902.4)^{0.1}-(960)^{0.4}(902.4)^{0.6}}{(0.4)(1000)+(0.6)(960)}=0.02978[[/math]]

The value for [math]l_{80}[/math] is arbitrary. Any other starting value gives the same result.

Another form for the survivors between 81 and 82 would be

[math]\mu=-\ln (902 / 960)=0.0095833[/math];

[math]l_{81.1}=960 \times e^{-0.1 \times 0.0095833}=959.08 ;[/math]

[math]l_{81.6}=960 \times e^{-0.6 \times 0.0095833}=954.496[/math].

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.