excans:61ffade529: Difference between revisions

From Stochiki
mNo edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 14: Line 14:


<math>l_{81.6}=960 \times e^{-0.6 \times 0.0095833}=954.496</math>.
<math>l_{81.6}=960 \times e^{-0.6 \times 0.0095833}=954.496</math>.
{{soacopyright | 2024 }}
{{soacopyright|2024}}
{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 01:34, 18 January 2024

Answer: C

Let [math]l_{80}=1000 \Rightarrow l_{81}=960 \Rightarrow l_{82}=902.4[/math]

[[math]]\textrm{Answer} \, =\frac{l_{81.1}-l_{81.6}}{l_{80.6}}=\frac{(960)^{0.9}(902.4)^{0.1}-(960)^{0.4}(902.4)^{0.6}}{(0.4)(1000)+(0.6)(960)}=0.02978[[/math]]

The value for [math]l_{80}[/math] is arbitrary. Any other starting value gives the same result.

Another form for the survivors between 81 and 82 would be

[math]\mu=-\ln (902 / 960)=0.0095833[/math];

[math]l_{81.1}=960 \times e^{-0.1 \times 0.0095833}=959.08 ;[/math]

[math]l_{81.6}=960 \times e^{-0.6 \times 0.0095833}=954.496[/math].

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.