excans:E3e413591a: Difference between revisions

From Stochiki
(Created page with "'''Answer: C''' <math display="block"> \begin{aligned} \mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\ & =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)} \end{aligned} </math> Therefore, <math>1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3</math>.")
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 12: Line 12:


Therefore, <math>1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3</math>.
Therefore, <math>1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3</math>.
{{soacopyright | 2024 }}
{{soacopyright|2024}}
{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 01:34, 18 January 2024

Answer: C

[[math]] \begin{aligned} \mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\ & =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)} \end{aligned} [[/math]]


Therefore, [math]1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3[/math].

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.