excans:E3e413591a: Difference between revisions
From Stochiki
(Created page with "'''Answer: C''' <math display="block"> \begin{aligned} \mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\ & =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)} \end{aligned} </math> Therefore, <math>1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3</math>.") |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 12: | Line 12: | ||
Therefore, <math>1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3</math>. | Therefore, <math>1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3</math>. | ||
{{soacopyright | 2024 }} | |||
{{soacopyright|2024}} | |||
{{soacopyright|2024}} | |||
{{soacopyright|2024}} |
Latest revision as of 01:34, 18 January 2024
Answer: C
[[math]]
\begin{aligned}
\mu_{x} & =-\frac{d}{d_{x}} \ln S_{0}(x)=-\frac{1}{3} \frac{d}{d_{x}} \ln \left(1-\frac{x}{60}\right) \\
& =\frac{1}{180}\left(1-\frac{x}{60}\right)^{-1}=\frac{1}{3(60-x)}
\end{aligned}
[[/math]]
Therefore, [math]1000 \mu_{35}=(1000) \frac{1}{3(25)}=\frac{1000}{75}=13.3[/math].