exercise:B8ae29be7e: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Assume that a new light bulb will burn out after <math>t</math>
\newcommand{\mathds}{\mathbb}</math></div> Assume that a new light bulb will burn out after <math>t</math> hours, where <math>t</math> is chosen from <math>[0,\infty)</math> with an exponential density
hours, where <math>t</math> is chosen from <math>[0,\infty)</math> with an exponential density


<math display="block">
<math display="block">

Latest revision as of 21:37, 12 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Assume that a new light bulb will burn out after [math]t[/math] hours, where [math]t[/math] is chosen from [math][0,\infty)[/math] with an exponential density

[[math]] f(t) = \lambda e^{-\lambda t}\ . [[/math]]

In this context, [math]\lambda[/math] is often called the failure rate of the bulb.

  • Assume that [math]\lambda = 0.01[/math], and find the probability that the bulb will not burn out before [math]T[/math] hours. This probability is often called the reliability of the bulb.
  • For what [math]T[/math] is the reliability of the bulb [math] = 1/2[/math]?