exercise:246cabd63e: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the interval <math>[0,1]</math> with uniform density. Note that the point <math>(B,C)</math> is then chosen ''at random'' in the unit square. Find the probabil...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math>
\newcommand{\mathds}{\mathbb}</math></div> Choose independently two numbers <math>B</math> and <math>C</math> ''at random'' from the interval <math>[0,1]</math> with uniform density.  Note that the point <math>(B,C)</math> is then chosen ''at random'' in the unit square.  Find the probability that
''at random'' from the interval <math>[0,1]</math> with uniform density.  Note that
 
the point <math>(B,C)</math> is then chosen ''at random'' in the unit square.  Find the
<ul style="list-style-type:lower-alpha"><li> <math>B + C  <  1/2</math>.
probability that
<ul><li> <math>B + C  <  1/2</math>.
</li>
</li>
<li> <math>BC  <  1/2</math>.
<li> <math>BC  <  1/2</math>.

Latest revision as of 21:38, 12 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Choose independently two numbers [math]B[/math] and [math]C[/math] at random from the interval [math][0,1][/math] with uniform density. Note that the point [math](B,C)[/math] is then chosen at random in the unit square. Find the probability that

  • [math]B + C \lt 1/2[/math].
  • [math]BC \lt 1/2[/math].
  • [math]|B - C| \lt 1/2[/math].
  • [math]\max\{B,C\} \lt 1/2[/math].
  • [math]\min\{B,C\} \lt 1/2[/math].
  • [math]B \lt 1/2[/math] and [math]1 - C \lt 1/2[/math].
  • conditions (c) and (f) both hold.
  • [math]B^2 + C^2 \leq 1/2[/math].
  • [math](B - 1/2)^2 + (C - 1/2)^2 \lt 1/4[/math].