exercise:E10b0ea664: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Assume that <math>E</math> and <math>F</math> are two events with positive probabilities. Show that if <math>P(E|F) = P(E)</math>, then <math>P(F|E) = P(F)</math>.")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Assume that <math>E</math> and <math>F</math> are two events with positive probabilities.  Show that if <math>P(E|F) = P(E)</math>, then <math>P(F|E) = P(F)</math>.
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Assume that <math>E</math> and <math>F</math> are two events with positive
probabilities.  Show that if <math>P(E|F) = P(E)</math>, then <math>P(F|E) = P(F)</math>.

Latest revision as of 23:37, 12 June 2024

Assume that [math]E[/math] and [math]F[/math] are two events with positive probabilities. Show that if [math]P(E|F) = P(E)[/math], then [math]P(F|E) = P(F)[/math].