exercise:92bbd1fbc0: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that <math>A</math> attracts <math>B</math> if and only if <math>B</math> attracts <math>A</math>. Hence we can say that <math>A</math> and <math>B</math> are ''mutually attractive'' if <math>A</math> attracts <math>B</math>.") |
No edit summary |
||
Line 1: | Line 1: | ||
Prove that <math>A</math> attracts <math>B</math> if and only if <math>B</math> attracts <math>A</math>. Hence we can say that <math>A</math> and <math>B</math> are ''mutually attractive'' if <math>A</math> attracts <math>B</math>. | |||
can say that <math>A</math> and <math>B</math> are ''mutually attractive'' if <math>A</math> attracts <math>B</math>. |
Latest revision as of 00:19, 13 June 2024
Prove that [math]A[/math] attracts [math]B[/math] if and only if [math]B[/math] attracts [math]A[/math]. Hence we can say that [math]A[/math] and [math]B[/math] are mutually attractive if [math]A[/math] attracts [math]B[/math].