exercise:92bbd1fbc0: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that <math>A</math> attracts <math>B</math> if and only if <math>B</math> attracts <math>A</math>. Hence we can say that <math>A</math> and <math>B</math> are ''mutually attractive'' if <math>A</math> attracts <math>B</math>.")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Prove that <math>A</math> attracts <math>B</math> if and only if <math>B</math> attracts <math>A</math>.  Hence we can say that <math>A</math> and <math>B</math> are ''mutually attractive'' if <math>A</math> attracts <math>B</math>.
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Prove that <math>A</math> attracts <math>B</math> if and only if <math>B</math> attracts <math>A</math>.  Hence we
can say that <math>A</math> and <math>B</math> are ''mutually attractive'' if <math>A</math> attracts <math>B</math>.

Latest revision as of 00:19, 13 June 2024

Prove that [math]A[/math] attracts [math]B[/math] if and only if [math]B[/math] attracts [math]A[/math]. Hence we can say that [math]A[/math] and [math]B[/math] are mutually attractive if [math]A[/math] attracts [math]B[/math].