exercise:Cb93f8e2ba: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>A</math> attracts both <math>B</math> and <math>C</math>, and <math>A</math> repels <math>B \cap C</math>, then <math>A</math> attracts <math>B \cup C</math>. Is there any example in which <math>A</math> attracts both <math>B<...") |
No edit summary |
||
Line 1: | Line 1: | ||
Prove that if <math>A</math> attracts both <math>B</math> and <math>C</math>, and <math>A</math> repels <math>B \cap C</math>, then <math>A</math> attracts <math>B \cup C</math>. Is there any example in which <math>A</math> attracts both | |||
then <math>A</math> attracts <math>B \cup C</math>. Is there any example in which <math>A</math> attracts both | |||
<math>B</math> and <math>C</math> and repels <math>B \cup C</math>? | <math>B</math> and <math>C</math> and repels <math>B \cup C</math>? |
Latest revision as of 00:19, 13 June 2024
Prove that if [math]A[/math] attracts both [math]B[/math] and [math]C[/math], and [math]A[/math] repels [math]B \cap C[/math], then [math]A[/math] attracts [math]B \cup C[/math]. Is there any example in which [math]A[/math] attracts both [math]B[/math] and [math]C[/math] and repels [math]B \cup C[/math]?