exercise:35c6ed892c: Difference between revisions

From Stochiki
(Created page with "Let <math>A</math> and <math>B</math> be events such that <math>P(A \cap B) = 1/4</math>, <math>P(A^c) = 1/3</math>, and <math>P(B^c) = 1/2</math>. What is <math>P(A \cup B)</math>? '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}")
 
No edit summary
 
Line 1: Line 1:
Let <math>A</math> and <math>B</math> be events such that <math>P(A \cap B) = 1/4</math>, <math>P(A^c) =
Let <math>A</math> and <math>B</math> be events such that <math>P(A \cap B) = 1/4</math>, <math>P(A^c) =
1/3</math>, and <math>P(B^c) = 1/2</math>.  What is <math>P(A \cup B)</math>?
1/3</math>, and <math>P(B^c) = 1/2</math>.  What is <math>P(A \cup B)</math>?
<ul class="mw-excansopts">
<li>1/2</li>
<li>7/12</li>
<li>2/3</li>
<li>11/12</li>
<li>1</li>
</ul>


'''References'''
'''References'''


{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}
{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}

Latest revision as of 17:06, 20 June 2024

Let [math]A[/math] and [math]B[/math] be events such that [math]P(A \cap B) = 1/4[/math], [math]P(A^c) = 1/3[/math], and [math]P(B^c) = 1/2[/math]. What is [math]P(A \cup B)[/math]?

  • 1/2
  • 7/12
  • 2/3
  • 11/12
  • 1

References

Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.