exercise:35c6ed892c: Difference between revisions
From Stochiki
(Created page with "Let <math>A</math> and <math>B</math> be events such that <math>P(A \cap B) = 1/4</math>, <math>P(A^c) = 1/3</math>, and <math>P(B^c) = 1/2</math>. What is <math>P(A \cup B)</math>? '''References''' {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}}") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>A</math> and <math>B</math> be events such that <math>P(A \cap B) = 1/4</math>, <math>P(A^c) = | Let <math>A</math> and <math>B</math> be events such that <math>P(A \cap B) = 1/4</math>, <math>P(A^c) = | ||
1/3</math>, and <math>P(B^c) = 1/2</math>. What is <math>P(A \cup B)</math>? | 1/3</math>, and <math>P(B^c) = 1/2</math>. What is <math>P(A \cup B)</math>? | ||
<ul class="mw-excansopts"> | |||
<li>1/2</li> | |||
<li>7/12</li> | |||
<li>2/3</li> | |||
<li>11/12</li> | |||
<li>1</li> | |||
</ul> | |||
'''References''' | '''References''' | ||
{{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}} | {{cite web |url=https://math.dartmouth.edu/~prob/prob/prob.pdf |title=Grinstead and Snell’s Introduction to Probability |last=Doyle |first=Peter G.|date=2006 |access-date=June 6, 2024}} |
Latest revision as of 17:06, 20 June 2024
Let [math]A[/math] and [math]B[/math] be events such that [math]P(A \cap B) = 1/4[/math], [math]P(A^c) = 1/3[/math], and [math]P(B^c) = 1/2[/math]. What is [math]P(A \cup B)[/math]?
- 1/2
- 7/12
- 2/3
- 11/12
- 1
References
Doyle, Peter G. (2006). "Grinstead and Snell's Introduction to Probability" (PDF). Retrieved June 6, 2024.