exercise:94fac4cbea: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 39: | Line 39: | ||
. | . | ||
</math> | </math> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Draw the curve traced out by the particle during | Draw the curve traced out by the particle during | ||
the interval <math>[-2,2]</math>.</li> | the interval <math>[-2,2]</math>.</li> | ||
Line 47: | Line 47: | ||
<math>t=-2</math>, <math>t=0</math>, <math>t=1</math>, and <math>t=2</math>. | <math>t=-2</math>, <math>t=0</math>, <math>t=1</math>, and <math>t=2</math>. | ||
Indicate these positions and draw the | Indicate these positions and draw the | ||
velocity vectors in the figure in | velocity vectors in the figure in (a).</li> | ||
<li>Compute the accleration vector <math>\vec a(t)</math>. | <li>Compute the accleration vector <math>\vec a(t)</math>. | ||
Determine the four specific vectors | Determine the four specific vectors | ||
<math>\vec a(-2)</math>, <math>\vec a(0)</math>, <math>\vec a(1)</math>, and <math>\vec a(2)</math>, | <math>\vec a(-2)</math>, <math>\vec a(0)</math>, <math>\vec a(1)</math>, and <math>\vec a(2)</math>, and draw them in the figure in (a).</li> | ||
and draw them in the figure in | |||
</ul> | </ul> |
Latest revision as of 22:53, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
[/math]
The position of a particle in motion in the plane is defined by the parametrization:
[[math]]
P(t) = (x,y) = (t^2,t^3), \quad -2 \leq t \leq 2
.
[[/math]]
- Draw the curve traced out by the particle during the interval [math][-2,2][/math].
- Compute the velocity vector [math]\vec v(t)[/math]. Find the position, velocity, and speed at [math]t=-2[/math], [math]t=0[/math], [math]t=1[/math], and [math]t=2[/math]. Indicate these positions and draw the velocity vectors in the figure in (a).
- Compute the accleration vector [math]\vec a(t)[/math]. Determine the four specific vectors [math]\vec a(-2)[/math], [math]\vec a(0)[/math], [math]\vec a(1)[/math], and [math]\vec a(2)[/math], and draw them in the figure in (a).