excans:F93c8f19ea: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 12: Line 12:


{{soacopyright | 2024 }}
{{soacopyright | 2024 }}
{{soacopyright|2024}}
{{soacopyright|2024}}


{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 02:34, 18 January 2024

Answer: B

Since [math]S_{0}(t)=1-F_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}[/math], we have [math]\ln \left[S_{0}(t)\right]=\frac{1}{4} \ln \left[\frac{\omega-t}{\omega}\right][/math].

Then [math]\mu_{t}=-\frac{d}{d t} \log S_{0}(t)=\frac{1}{4} \frac{1}{\omega-t}[/math], and [math]\mu_{65}=\frac{1}{180}=\frac{1}{4} \frac{1}{\omega-65} \Rightarrow \omega=110[/math].

[math]e_{106}=\sum_{t=1}^{3}{ }_{t} p_{106}[/math], since [math]{ }_{4} p_{106}=0[/math]

[math]{ }_{t} p_{106}=\frac{S_{0}(106+t)}{S_{0}(106)}=\frac{\left(1-\frac{106+t}{110}\right)^{1 / 4}}{\left(1-\frac{106}{110}\right)^{1 / 4}}=\left(\frac{4-t}{4}\right)^{1 / 4}[/math]

[math]e_{106}=\sum_{i=1}^{i=4}{ }_{t} p_{106}=\frac{1}{4^{0.25}}\left(1^{0.25}+2^{0.25}+3^{0.25}\right)=2.4786[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.