exercise:Fa9dae7050: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that for any three events <math>A</math>, <math>B</math>, <math>C</math>, each having positive probability, and with the property that <math>P(A \cap B) > 0</math>, <math display="block"> P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)\ . </...")
 
No edit summary
 
Line 5: Line 5:
\newcommand{\secstoprocess}{\all}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Prove that for any three events <math>A</math>, <math>B</math>, <math>C</math>, each having positive
\newcommand{\mathds}{\mathbb}</math></div> Prove that for any three events <math>A</math>, <math>B</math>, <math>C</math>, each having positive probability, and with the property that <math>P(A \cap B)  >  0</math>,
probability, and with the property that <math>P(A \cap B)  >  0</math>,


<math display="block">
<math display="block">
P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)\ .
P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)\ .
</math>
</math>

Latest revision as of 23:45, 12 June 2024

[math] \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}[/math]

Prove that for any three events [math]A[/math], [math]B[/math], [math]C[/math], each having positive probability, and with the property that [math]P(A \cap B) \gt 0[/math],

[[math]] P(A \cap B \cap C) = P(A)P(B|A)P(C|A \cap B)\ . [[/math]]