exercise:981da7a5df: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\ex}[1]{\item } \newcommand{\sx}{\item} \newcommand{\x}{\sx} \newcommand{\sxlab}[1]{} \newcommand{\xlab}{\sxlab} \newcommand{\prov}[1] {\quad #1} \newcommand{\provx}[1] {\quad \mbox{#1}} \newcommand{\intext}[1]{\quad \mbox{#1} \quad} \newcommand{\R}{\mathrm{\bf R}} \newcommand{\Q}{\mathrm{\bf Q}} \newcommand{\Z}{\mathrm{\bf Z}} \newcommand{\C}{\mathrm{\bf C}} \newcommand{\dt}{\textbf} \newcommand{\goesto}{\rightarrow}...") |
No edit summary |
||
Line 31: | Line 31: | ||
\newcommand{\conj}[1]{\overline{#1}} | \newcommand{\conj}[1]{\overline{#1}} | ||
\newcommand{\mathds}{\mathbb} | \newcommand{\mathds}{\mathbb} | ||
\newcommand{\dilemma}[2] { | |||
\left\{ | |||
\begin{array}{ll} | |||
#1 \\ | |||
#2 | |||
\end{array} | |||
\right. | |||
} | |||
\newcommand{\trilemma}[3] { | |||
\left\{ | |||
\begin{array}{ll} | |||
#1 \\ | |||
#2 \\ | |||
#3 | |||
\end{array} | |||
\right. | |||
} | |||
</math></div> | </math></div> | ||
<ul style{{=}}"list-style-type:lower-alpha" | <ul style{{=}}"list-style-type:lower-alpha"> | ||
<li> | <li> | ||
Draw each of the following vectors. | Draw each of the following vectors. | ||
(i) <math>(0,5)_{P_0}</math>, where <math>P_0 = (-1,1)</math>. | (i) <math>(0,5)_{P_0}</math>, where <math>P_0 = (-1,1)</math>. | ||
Line 40: | Line 57: | ||
(iv) <math>(-2,-3)_{P_3}</math>, where <math>P_3 = (0,0)</math>.</li> | (iv) <math>(-2,-3)_{P_3}</math>, where <math>P_3 = (0,0)</math>.</li> | ||
<li>Let <math>P_0 = (-1,1)</math>, and compute and draw the | <li>Let <math>P_0 = (-1,1)</math>, and compute and draw the | ||
translated vectors <math>T_{P_0}(\vec u)</math>, | translated vectors <math>T_{P_0}(\vec u)</math>, where <math>\vec u</math> is taken to be each of the four vectors in (a).</li> | ||
where <math>\vec u</math> is taken to be each of the four | |||
vectors in | |||
</ul> | </ul> |
Latest revision as of 22:52, 25 November 2024
[math]
\newcommand{\ex}[1]{\item }
\newcommand{\sx}{\item}
\newcommand{\x}{\sx}
\newcommand{\sxlab}[1]{}
\newcommand{\xlab}{\sxlab}
\newcommand{\prov}[1] {\quad #1}
\newcommand{\provx}[1] {\quad \mbox{#1}}
\newcommand{\intext}[1]{\quad \mbox{#1} \quad}
\newcommand{\R}{\mathrm{\bf R}}
\newcommand{\Q}{\mathrm{\bf Q}}
\newcommand{\Z}{\mathrm{\bf Z}}
\newcommand{\C}{\mathrm{\bf C}}
\newcommand{\dt}{\textbf}
\newcommand{\goesto}{\rightarrow}
\newcommand{\ddxof}[1]{\frac{d #1}{d x}}
\newcommand{\ddx}{\frac{d}{dx}}
\newcommand{\ddt}{\frac{d}{dt}}
\newcommand{\dydx}{\ddxof y}
\newcommand{\nxder}[3]{\frac{d^{#1}{#2}}{d{#3}^{#1}}}
\newcommand{\deriv}[2]{\frac{d^{#1}{#2}}{dx^{#1}}}
\newcommand{\dist}{\mathrm{distance}}
\newcommand{\arccot}{\mathrm{arccot\:}}
\newcommand{\arccsc}{\mathrm{arccsc\:}}
\newcommand{\arcsec}{\mathrm{arcsec\:}}
\newcommand{\arctanh}{\mathrm{arctanh\:}}
\newcommand{\arcsinh}{\mathrm{arcsinh\:}}
\newcommand{\arccosh}{\mathrm{arccosh\:}}
\newcommand{\sech}{\mathrm{sech\:}}
\newcommand{\csch}{\mathrm{csch\:}}
\newcommand{\conj}[1]{\overline{#1}}
\newcommand{\mathds}{\mathbb}
\newcommand{\dilemma}[2] {
\left\{
\begin{array}{ll}
#1 \\
#2
\end{array}
\right.
}
\newcommand{\trilemma}[3] {
\left\{
\begin{array}{ll}
#1 \\
#2 \\
#3
\end{array}
\right.
}
[/math]
- Draw each of the following vectors. (i) [math](0,5)_{P_0}[/math], where [math]P_0 = (-1,1)[/math]. (ii) [math](4,-1)_{P_1}[/math], where [math]P_1 = (1,-1)[/math]. (iii) [math](1,3)_{P_2}[/math], where [math]P_2 = (1,1)[/math]. (iv) [math](-2,-3)_{P_3}[/math], where [math]P_3 = (0,0)[/math].
- Let [math]P_0 = (-1,1)[/math], and compute and draw the translated vectors [math]T_{P_0}(\vec u)[/math], where [math]\vec u[/math] is taken to be each of the four vectors in (a).