excans:15ca15e0f1: Difference between revisions

From Stochiki
(Created page with "'''Key: C''' In general, <math display="block">\begin{aligned} E\left(X^{2}\right)-E\left[(X \wedge 150)^{2}\right] &=\int_{0}^{200} x^{2} f(x) d x-\int_{0}^{150} x^{2} f(x...")
 
mNo edit summary
 
Line 4: Line 4:


<math display="block">\begin{aligned}
<math display="block">\begin{aligned}
  E\left(X^{2}\right)-E\left[(X \wedge 150)^{2}\right] &=\int_{0}^{200} x^{2} f(x) d x-\int_{0}^{150} x^{2} f(x) d x-150^{2} \int_{150}^{200} f(x) d x \\
  \operatorname{E}(X^{2})-E\left[(X \wedge 150)^{2}\right] &=\int_{0}^{200} x^{2} f(x) d x-\int_{0}^{150} x^{2} f(x) d x-150^{2} \int_{150}^{200} f(x) d x \\
& =\int_{150}^{200}\left(x^{2}-150^{2}\right) f(x) d x
& =\int_{150}^{200}\left(x^{2}-150^{2}\right) f(x) d x
\end{aligned}</math>
\end{aligned}</math>

Latest revision as of 17:55, 13 May 2023

Key: C

In general,

[[math]]\begin{aligned} \operatorname{E}(X^{2})-E\left[(X \wedge 150)^{2}\right] &=\int_{0}^{200} x^{2} f(x) d x-\int_{0}^{150} x^{2} f(x) d x-150^{2} \int_{150}^{200} f(x) d x \\ & =\int_{150}^{200}\left(x^{2}-150^{2}\right) f(x) d x \end{aligned}[[/math]]

Assuming a uniform distribution, the density function over the interval from 100 to 200 is [math]6 / 7400[/math] (the probability of [math]6 / 74[/math] assigned to the interval divided by the width of the interval). The answer is

[[math]]\int_{150}^{200}\left(x^{2}-150^{2}\right) \frac{6}{7400} d x=\left.\left(\frac{x^{3}}{3}-150^{2} x\right) \frac{6}{7400}\right|_{150} ^{200}=337.84[[/math]]

Copyright 2023. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.