exercise:9b2dcb9f05: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"> <math> \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SS...")
 
mNo edit summary
 
Line 32: Line 32:
</div>
</div>


This exercise is inspired by one from <ref name="Drap1998">Draper, N. R. and Smith, H. (1998).''Applied Regression Analysis (3rd edition)''.John Wiley & Sons</ref>. Consider the simple linear regression model <math>Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i</math> with <math>\varepsilon_i \sim \mathcal{N}(0, \sigma^2)</math>. The data on the covariate and response are: <math>\mathbf{X}^{\top} = (X_1, X_2, \ldots, X_{8})^{\top} = (-2, -1, -1, -1, 0, 1, 2, 2)^{\top}</math> and <math>\mathbf{Y}^{\top} = (Y_1, Y_2, \ldots, Y_{8})^{\top} = (35, 40, 36, 38, 40, 43, 45, 43)^{\top}</math>, with corresponding elements in the same order.
Consider the linear regression model <math>Y_i = X_i \beta + \varepsilon_i</math> with the <math>\varepsilon_i</math> i.i.d. following a standard normal law <math>\mathcal{N}(0, 1)</math>. Data on the response and covariate are available: <math>\{(y_i, x_i)\}_{i=1}^8 = \{ (-5, -2), (0, -1), \\ (-4, -1), (-2, -1), (0, 0), (3,1), (5,2), (3,2) \}</math>.
<ul style="list-style-type:lower-alpha"><li> Find the ridge regression estimator for the data above for a general value of <math>\lambda</math>.  
<ul style="list-style-type:lower-alpha"><li> Assume a zero-centered normal prior on <math>\beta</math>. What variance, i.e. which <math>\sigma_{\beta}^2 \in \mathbb{R}_{>0}</math>, of this prior yields a mean posterior <math>\mathbb{E}(\beta \, | \, \{(y_i, x_i)\}_{i=1}^8, \sigma_{\beta}^2)</math> equal to <math>1.4</math>?
</li>
</li>
<li> Evaluate the fit, i.e. <math>\widehat{Y}_i(\lambda)</math> for <math>\lambda=10</math>. Would you judge the fit as good? If not, what is the most striking feature that you find unsatisfactory?
<li>   Assume a non-zero centered normal prior. What (mean, variance)-combinations for the prior will yield a mean posterior estimate <math>\hat{\beta} = 2</math>?
</li>
<li> Now zero center the covariate and response data, denote it by <math>\tilde{X}_i</math> and <math>\tilde{Y}_i</math>, and evaluate the ridge estimator of <math>\tilde{Y}_i = \beta_1 \tilde{X}_i + \varepsilon_i</math> at <math>\lambda=4</math>. Verify that in terms of original data the resulting predictor now is: <math>\widehat{Y}_i(\lambda) = 40 + 1.75 X</math>.
</li>
</li>
</ul>
</ul>
Note that the employed estimate in the predictor found in part ''c)'' is effectively a combination of a maximum likelihood and ridge regression one for intercept and slope, respectively. Put differently, only the slope has been regularized/penalized.

Latest revision as of 22:44, 24 June 2023

[math] \require{textmacros} \def \bbeta {\bf \beta} \def\fat#1{\mbox{\boldmath$#1$}} \def\reminder#1{\marginpar{\rule[0pt]{1mm}{11pt}}\textbf{#1}} \def\SSigma{\bf \Sigma} \def\ttheta{\bf \theta} \def\aalpha{\bf \alpha} \def\ddelta{\bf \delta} \def\eeta{\bf \eta} \def\llambda{\bf \lambda} \def\ggamma{\bf \gamma} \def\nnu{\bf \nu} \def\vvarepsilon{\bf \varepsilon} \def\mmu{\bf \mu} \def\nnu{\bf \nu} \def\ttau{\bf \tau} \def\SSigma{\bf \Sigma} \def\TTheta{\bf \Theta} \def\XXi{\bf \Xi} \def\PPi{\bf \Pi} \def\GGamma{\bf \Gamma} \def\DDelta{\bf \Delta} \def\ssigma{\bf \sigma} \def\UUpsilon{\bf \Upsilon} \def\PPsi{\bf \Psi} \def\PPhi{\bf \Phi} \def\LLambda{\bf \Lambda} \def\OOmega{\bf \Omega} [/math]

Consider the linear regression model [math]Y_i = X_i \beta + \varepsilon_i[/math] with the [math]\varepsilon_i[/math] i.i.d. following a standard normal law [math]\mathcal{N}(0, 1)[/math]. Data on the response and covariate are available: [math]\{(y_i, x_i)\}_{i=1}^8 = \{ (-5, -2), (0, -1), \\ (-4, -1), (-2, -1), (0, 0), (3,1), (5,2), (3,2) \}[/math].

  • Assume a zero-centered normal prior on [math]\beta[/math]. What variance, i.e. which [math]\sigma_{\beta}^2 \in \mathbb{R}_{\gt0}[/math], of this prior yields a mean posterior [math]\mathbb{E}(\beta \, | \, \{(y_i, x_i)\}_{i=1}^8, \sigma_{\beta}^2)[/math] equal to [math]1.4[/math]?
  • Assume a non-zero centered normal prior. What (mean, variance)-combinations for the prior will yield a mean posterior estimate [math]\hat{\beta} = 2[/math]?