excans:F93c8f19ea: Difference between revisions

From Stochiki
No edit summary
No edit summary
Line 12: Line 12:


{{soacopyright | 2024 }}
{{soacopyright | 2024 }}
{{soacopyright|2024}}


{{soacopyright|2024}}
{{soacopyright|2024}}

Revision as of 02:34, 18 January 2024

Answer: B

Since [math]S_{0}(t)=1-F_{0}(t)=\left(1-\frac{t}{\omega}\right)^{\frac{1}{4}}[/math], we have [math]\ln \left[S_{0}(t)\right]=\frac{1}{4} \ln \left[\frac{\omega-t}{\omega}\right][/math].

Then [math]\mu_{t}=-\frac{d}{d t} \log S_{0}(t)=\frac{1}{4} \frac{1}{\omega-t}[/math], and [math]\mu_{65}=\frac{1}{180}=\frac{1}{4} \frac{1}{\omega-65} \Rightarrow \omega=110[/math].

[math]e_{106}=\sum_{t=1}^{3}{ }_{t} p_{106}[/math], since [math]{ }_{4} p_{106}=0[/math]

[math]{ }_{t} p_{106}=\frac{S_{0}(106+t)}{S_{0}(106)}=\frac{\left(1-\frac{106+t}{110}\right)^{1 / 4}}{\left(1-\frac{106}{110}\right)^{1 / 4}}=\left(\frac{4-t}{4}\right)^{1 / 4}[/math]

[math]e_{106}=\sum_{i=1}^{i=4}{ }_{t} p_{106}=\frac{1}{4^{0.25}}\left(1^{0.25}+2^{0.25}+3^{0.25}\right)=2.4786[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.