excans:77fb6df52e: Difference between revisions
From Stochiki
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
{{soacopyright | 2024 }} | {{soacopyright | 2024 }} | ||
{{soacopyright|2024}} | |||
{{soacopyright|2024}} | {{soacopyright|2024}} | ||
{{soacopyright|2024}} | {{soacopyright|2024}} |
Latest revision as of 01:34, 18 January 2024
Answer: A
[math]E\left[T_{0}\right]=\int_{0}^{8}{ }_{t} p_{0} d t=\int_{0}^{8}\left(1-\frac{t^{2}+t}{72}\right) d t \rightarrow \frac{1}{72}\left[72 t-\frac{t^{3}}{3}-\frac{t^{2}}{2}\right]_{0}^{8}=5.1852[/math]
[math]E\left[T_{0}{ }^{2}\right]=2 \int_{0}^{8}\left({ }_{t} p_{0} \times t\right) d t=\frac{2}{72} \int_{0}^{8}\left(72 t-t^{3}-t^{2}\right) d t=\frac{2}{72}\left[36 t^{2}-\frac{t^{4}}{4}-\frac{t^{3}}{3}\right]_{0}^{8}=30.815[/math]
[math]\operatorname{Var}\left[T_{0}\right]=E\left[T_{0}^{2}\right]-\left(E\left[T_{0}\right]\right)^{2}=3.9287[/math]