excans:77fb6df52e: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
Line 8: Line 8:


{{soacopyright | 2024 }}
{{soacopyright | 2024 }}
{{soacopyright|2024}}


{{soacopyright|2024}}
{{soacopyright|2024}}


{{soacopyright|2024}}
{{soacopyright|2024}}

Latest revision as of 01:34, 18 January 2024

Answer: A

[math]E\left[T_{0}\right]=\int_{0}^{8}{ }_{t} p_{0} d t=\int_{0}^{8}\left(1-\frac{t^{2}+t}{72}\right) d t \rightarrow \frac{1}{72}\left[72 t-\frac{t^{3}}{3}-\frac{t^{2}}{2}\right]_{0}^{8}=5.1852[/math]

[math]E\left[T_{0}{ }^{2}\right]=2 \int_{0}^{8}\left({ }_{t} p_{0} \times t\right) d t=\frac{2}{72} \int_{0}^{8}\left(72 t-t^{3}-t^{2}\right) d t=\frac{2}{72}\left[36 t^{2}-\frac{t^{4}}{4}-\frac{t^{3}}{3}\right]_{0}^{8}=30.815[/math]

[math]\operatorname{Var}\left[T_{0}\right]=E\left[T_{0}^{2}\right]-\left(E\left[T_{0}\right]\right)^{2}=3.9287[/math]

Copyright 2024 . The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.

Copyright 2024. The Society of Actuaries, Schaumburg, Illinois. Reproduced with permission.