|
|
Line 1: |
Line 1: |
| <div class="d-none"><math>
| | Use [[exercise:A4a4728515 |Problem]] to give an alternative proof of the Johnson-Lindenstrauss Lemma that does not rely on the Gaussian Annulus Theorem. |
| \newcommand{\smallfrac}[2]{\frac{#1}{#2}}
| |
| \newcommand{\medfrac}[2]{\frac{#1}{#2}}
| |
| \newcommand{\textfrac}[2]{\frac{#1}{#2}}
| |
| \newcommand{\tr}{\operatorname{tr}}
| |
| \newcommand{\e}{\operatorname{e}}
| |
| \newcommand{\B}{\operatorname{B}}
| |
| \newcommand{\Bbar}{\overline{\operatorname{B}}}
| |
| \newcommand{\pr}{\operatorname{pr}}
| |
| \newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
| |
| \newcommand{\E}{\operatorname{E}}
| |
| \newcommand{\V}{\operatorname{V}}
| |
| \newcommand{\Cov}{\operatorname{Cov}}
| |
| \newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
| |
| \newcommand{\ran}{\operatorname{ran}}
| |
| \newcommand{\card}{\#}
| |
| \newcommand{\mathds}{\mathbb}
| |
| \renewcommand{\P}{\operatorname{P}}
| |
| \renewcommand{\L}{\operatorname{L}}
| |
| </math></div>
| |
| | |
| Use [[guide:7885448c04#NaiveTailBound |Problem]] to give an alternative proof of the Johnson-Lindenstrauss Lemma that does not rely on the Gaussian Annulus Theorem. | |
Latest revision as of 02:44, 2 June 2024
Use Problem to give an alternative proof of the Johnson-Lindenstrauss Lemma that does not rely on the Gaussian Annulus Theorem.