exercise:38aca55fd9: Difference between revisions

From Stochiki
No edit summary
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Use [[exercise:A4a4728515 |Problem]] to give an alternative proof of the Johnson-Lindenstrauss Lemma that does not rely on the Gaussian Annulus Theorem.
\newcommand{\smallfrac}[2]{\frac{#1}{#2}}
\newcommand{\medfrac}[2]{\frac{#1}{#2}}
\newcommand{\textfrac}[2]{\frac{#1}{#2}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\e}{\operatorname{e}}
\newcommand{\B}{\operatorname{B}}
\newcommand{\Bbar}{\overline{\operatorname{B}}}
\newcommand{\pr}{\operatorname{pr}}
\newcommand{\dd}{\operatorname{d}\hspace{-1pt}}
\newcommand{\E}{\operatorname{E}}
\newcommand{\V}{\operatorname{V}}
\newcommand{\Cov}{\operatorname{Cov}}
\newcommand{\Bigsum}[2]{\mathop{\textstyle\sum}_{#1}^{#2}}
\newcommand{\ran}{\operatorname{ran}}
\newcommand{\card}{\#}
\newcommand{\mathds}{\mathbb}
\renewcommand{\P}{\operatorname{P}}
\renewcommand{\L}{\operatorname{L}}
</math></div>
 
Use [[guide:7885448c04#NaiveTailBound |Problem]] to give an alternative proof of the Johnson-Lindenstrauss Lemma that does not rely on the Gaussian Annulus Theorem.

Latest revision as of 03:44, 2 June 2024

Use Problem to give an alternative proof of the Johnson-Lindenstrauss Lemma that does not rely on the Gaussian Annulus Theorem.