exercise:77b1769c9e: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> \begin{sloppypar} Given that <math>P(X = a) = r</math>, <math>P(\max(X,Y) = a) = s</math>, and <math>P(\min(X,Y) = a) = t</math>, show that you can determine <math>u = P(Y = a)</math> in terms of <math>r</math>, <math>s</math>, and <math>t</math...") |
No edit summary |
||
Line 1: | Line 1: | ||
Given that <math>P(X = a) = r</math>, <math>P(\max(X,Y) = a) = s</math>,and <math>P(\min(X,Y) = a) = t</math>, show that you can determine <math>u = P(Y = a)</math> in terms of <math>r</math>, <math>s</math>, and <math>t</math>.\end{sloppypar} | |||
and | |||
<math>P(\min(X,Y) = a) = t</math>, show that you can determine <math>u = P(Y = a)</math> in terms of <math>r</math>, <math>s</math>, | |||
and <math>t</math>.\end{sloppypar} |
Revision as of 00:05, 13 June 2024
Given that [math]P(X = a) = r[/math], [math]P(\max(X,Y) = a) = s[/math],and [math]P(\min(X,Y) = a) = t[/math], show that you can determine [math]u = P(Y = a)[/math] in terms of [math]r[/math], [math]s[/math], and [math]t[/math].\end{sloppypar}