exercise:E28222568d: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Assume that the random variables <math>X</math> and <math>Y</math> have the joint distribution given in Table. <span id="table 4.5"/> {|class="table" |+ Joint distribution. |- ||| || <math>Y</math> ||...")
 
No edit summary
Line 1: Line 1:
<div class="d-none"><math>
Assume that the random variables <math>X</math> and <math>Y</math> have the joint distribution given in [[guide:448d2aa013#table 4.5 |Table]].
\newcommand{\NA}{{\rm NA}}
 
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Assume that the random variables <math>X</math> and <math>Y</math> have the joint distribution
given in [[guide:448d2aa013#table 4.5 |Table]].
<span id="table 4.5"/>
<span id="table 4.5"/>
{|class="table"
{|class="table"
Line 23: Line 17:
|||  2  || 1/12  ||  0    ||  1/12  || 1/6     
|||  2  || 1/12  ||  0    ||  1/12  || 1/6     
|}
|}
<ul><li> What is <math>P(X \geq 1\ \mbox {and\ } Y \leq 0)</math>?
 
<ul style="list-style-type:lower-alpha"><li> What is <math>P(X \geq 1\ \mbox {and\ } Y \leq 0)</math>?
</li>
</li>
<li> What is the conditional probability that <math>Y \leq 0</math> given that <math>X = 2</math>?
<li> What is the conditional probability that <math>Y \leq 0</math> given that <math>X = 2</math>?

Revision as of 00:05, 13 June 2024

Assume that the random variables [math]X[/math] and [math]Y[/math] have the joint distribution given in Table.

Joint distribution.
[math]Y[/math]
-1 0 1 2
[math]X[/math] -1 0 1/36 1/6 1/12
0 1/18 0 1/18 0
1 0 1/36 1/6 1/12
2 1/12 0 1/12 1/6
  • What is [math]P(X \geq 1\ \mbox {and\ } Y \leq 0)[/math]?
  • What is the conditional probability that [math]Y \leq 0[/math] given that [math]X = 2[/math]?
  • Are [math]X[/math] and [math]Y[/math] independent?
  • What is the distribution of [math]Z = XY[/math]?