exercise:7ddf221305: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1</math> and <math>X_2</math> be independent random variables and let <math>Y_1 = \phi_1(X_1)</math> and <math>Y_2 = \phi_2(X_2)</math>. <ul><li> Show that <math display="block"> P(Y_1 = r, Y_2 = s) = \sum_{\phi_1(a) = r \atop \phi_2(...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X_1</math> and <math>X_2</math> be independent random variables and let <math>Y_1 =
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X_1</math> and <math>X_2</math> be independent random variables and let <math>Y_1 =
\phi_1(X_1)</math> and <math>Y_2 = \phi_2(X_2)</math>.
\phi_1(X_1)</math> and <math>Y_2 = \phi_2(X_2)</math>.
<ul><li> Show that
<ul style="list-style-type:lower-alpha"><li> Show that


<math display="block">
<math display="block">

Latest revision as of 00:13, 13 June 2024

Let [math]X_1[/math] and [math]X_2[/math] be independent random variables and let [math]Y_1 = \phi_1(X_1)[/math] and [math]Y_2 = \phi_2(X_2)[/math].

  • Show that
    [[math]] P(Y_1 = r, Y_2 = s) = \sum_{\phi_1(a) = r \atop \phi_2(b) = s} P(X_1 = a, X_2 = b)\ . [[/math]]
  • Using (a), show that [math]P(Y_1 = r, Y_2 = s) = P(Y_1 = r)P(Y_2 = s)[/math] so that [math]Y_1[/math] and [math]Y_2[/math] are independent.