exercise:Aaa06983de: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>B_1</math>, <math>B_2</math>, \dots, <math>B_n</math> are mutually disjoint and collectively exhaustive, and if <math>A</math> attracts some <math>B_i</math>, then <math>A</math> must repel some <math>B_j</math>.")
 
No edit summary
Line 1: Line 1:
<div class="d-none"><math>
Prove that if <math>B_1</math>, <math>B_2</math>, \dots, <math>B_n</math> are mutually disjoint and collectively exhaustive, and if <math>A</math> attracts some <math>B_i</math>, then <math>A</math> must repel
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Prove that if <math>B_1</math>, <math>B_2</math>, \dots, <math>B_n</math> are mutually disjoint and
collectively exhaustive, and if <math>A</math> attracts some <math>B_i</math>, then <math>A</math> must repel
some <math>B_j</math>.
some <math>B_j</math>.

Revision as of 00:19, 13 June 2024

Prove that if [math]B_1[/math], [math]B_2[/math], \dots, [math]B_n[/math] are mutually disjoint and collectively exhaustive, and if [math]A[/math] attracts some [math]B_i[/math], then [math]A[/math] must repel some [math]B_j[/math].