exercise:8331f3c8b7: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let $U$, <math>V</math> be random numbers chosen independently from the interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density of each of the variables <ul><li> <math>Y = U + V</math>. </li> <li> <math...") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>U</math>, <math>V</math> be random numbers chosen independently from the interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density of each of the variables | |||
<ul style="list-style-type:lower-alpha"><li> <math>Y = U + V</math>. | |||
interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density of each | |||
of the variables | |||
<ul><li> <math>Y = U + V</math>. | |||
</li> | </li> | ||
<li> <math>Y = |U - V|</math>. | <li> <math>Y = |U - V|</math>. | ||
</li> | </li> | ||
</ul> | </ul> |
Latest revision as of 00:57, 14 June 2024
Let [math]U[/math], [math]V[/math] be random numbers chosen independently from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density of each of the variables
- [math]Y = U + V[/math].
- [math]Y = |U - V|[/math].