exercise:8331f3c8b7: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let $U$, <math>V</math> be random numbers chosen independently from the interval <math>[0,1]</math> with uniform distribution. Find the cumulative distribution and density of each of the variables <ul><li> <math>Y = U + V</math>. </li> <li> <math...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>U</math>, <math>V</math> be random numbers chosen independently from the interval <math>[0,1]</math> with uniform distribution.  Find the cumulative distribution and density of each of the variables
\newcommand{\NA}{{\rm NA}}
 
\newcommand{\mat}[1]{{\bf#1}}
<ul style="list-style-type:lower-alpha"><li> <math>Y = U + V</math>.
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let $U$, <math>V</math> be random numbers chosen independently from the
interval <math>[0,1]</math> with uniform distribution.  Find the cumulative distribution and density of each
of the variables
<ul><li> <math>Y = U + V</math>.
</li>
</li>
<li> <math>Y = |U - V|</math>.
<li> <math>Y = |U - V|</math>.
</li>
</li>
</ul>
</ul>

Latest revision as of 00:57, 14 June 2024

Let [math]U[/math], [math]V[/math] be random numbers chosen independently from the interval [math][0,1][/math] with uniform distribution. Find the cumulative distribution and density of each of the variables

  • [math]Y = U + V[/math].
  • [math]Y = |U - V|[/math].