exercise:77ea6286d5: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function <math>F</math>. The ''median'' of <math>X</math> is the value <math>m</math> for which <math>F(m) = 1/2</math>. Then <math>X < m</math> with probability 1/2 and <ma...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with cumulative distribution function
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function
<math>F</math>.  The  ''median'' of <math>X</math> is the value <math>m</math> for which <math>F(m) = 1/2</math>.  Then
<math>F</math>.  The  ''median'' of <math>X</math> is the value <math>m</math> for which <math>F(m) = 1/2</math>.  Then
<math>X  <  m</math> with probability 1/2 and <math>X  >  m</math> with probability 1/2.  Find <math>m</math> if <math>X</math> is
<math>X  <  m</math> with probability 1/2 and <math>X  >  m</math> with probability 1/2.  Find <math>m</math> if <math>X</math> is
<ul><li> uniformly distributed over the interval <math>[a,b]</math>.
<ul style="list-style-type:lower-alpha"><li> uniformly distributed over the interval <math>[a,b]</math>.
</li>
</li>
<li> normally distributed with parameters <math>\mu</math> and <math>\sigma</math>.
<li> normally distributed with parameters <math>\mu</math> and <math>\sigma</math>.

Latest revision as of 01:06, 14 June 2024

Let [math]X[/math] be a random variable with cumulative distribution function [math]F[/math]. The median of [math]X[/math] is the value [math]m[/math] for which [math]F(m) = 1/2[/math]. Then [math]X \lt m[/math] with probability 1/2 and [math]X \gt m[/math] with probability 1/2. Find [math]m[/math] if [math]X[/math] is

  • uniformly distributed over the interval [math][a,b][/math].
  • normally distributed with parameters [math]\mu[/math] and [math]\sigma[/math].
  • exponentially distributed with parameter [math]\lambda[/math].