exercise:D598793dbf: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with density function <math>f_X</math>. The ''mode'' of <math>X</math> is the value <math>M</math> for which <math>f(M)</math> is maximum. Then values of <math>X</math> near <math>M</math> are most likely...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with density function <math>f_X</math>. The  ''mode'' of <math>X</math> is the value <math>M</math> for which <math>f(M)</math> is maximum.  Then values of <math>X</math> near <math>M</math> are most likely to occur.  Find <math>M</math> if <math>X</math> is distributed normally or exponentially, as in [[exercise:77ea6286d5 |Exercise]].  What happens if <math>X</math> is distributed uniformly?
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with density function <math>f_X</math>.  
The  ''mode'' of <math>X</math> is the value <math>M</math> for which <math>f(M)</math> is maximum.  Then values of
<math>X</math> near <math>M</math> are most likely to occur.  Find <math>M</math> if <math>X</math> is distributed normally or
exponentially, as in Exercise [[exercise:77ea6286d5 |Exercise]].  What happens if <math>X</math> is distributed
uniformly?

Latest revision as of 01:07, 14 June 2024

Let [math]X[/math] be a random variable with density function [math]f_X[/math]. The mode of [math]X[/math] is the value [math]M[/math] for which [math]f(M)[/math] is maximum. Then values of [math]X[/math] near [math]M[/math] are most likely to occur. Find [math]M[/math] if [math]X[/math] is distributed normally or exponentially, as in Exercise. What happens if [math]X[/math] is distributed uniformly?