exercise:Ef1ed87dcb: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with density function <math>f_X(x)</math>. Show that if <math display="block"> \int_{-\infty}^{+\infty} x^2 f_X(x)\, dx < \infty\ , </math> then <math display="block"> \int_{-\infty}^{+\infty...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a continuous random variable with density function <math>f_X(x)</math>.  Show that if
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a continuous random variable with density
function <math>f_X(x)</math>.  Show that if


<math display="block">
<math display="block">

Latest revision as of 21:38, 14 June 2024

Let [math]X[/math] be a continuous random variable with density function [math]f_X(x)[/math]. Show that if

[[math]] \int_{-\infty}^{+\infty} x^2 f_X(x)\, dx \lt \infty\ , [[/math]]

then

[[math]] \int_{-\infty}^{+\infty} |x| f_X(x)\, dx \lt \infty\ . [[/math]]

Hint: Except on the interval [math][-1, 1][/math], the first integrand is greater than the second integrand.