exercise:A3becb6f66: Difference between revisions
From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with density function <math>f_X</math>. The ''mean'' of <math>X</math> is the value <math>\mu = \int xf_x(x)\,dx</math>. Then <math>\mu</math> gives an average value for <math>X</math> (see Section \ref{s...") |
No edit summary |
||
Line 1: | Line 1: | ||
Let <math>X</math> be a random variable with density function <math>f_X</math>. The ''mean'' of <math>X</math> is the value <math>\mu = \int xf_x(x)\,dx</math>. Then <math>\mu</math> gives an average value for <math>X</math> (see Section \ref{sec 6.3}). Find <math>\mu</math> if <math>X</math> is distributed uniformly, normally, or exponentially, as in [[exercise:77ea6286d5 |Exercise]]. | |||
The ''mean'' of <math>X</math> is the value <math>\mu = \int xf_x(x)\,dx</math>. Then <math>\mu</math> gives an | |||
average value for <math>X</math> (see Section \ref{sec 6.3}). Find <math>\mu</math> if <math>X</math> is distributed | |||
uniformly, normally, or exponentially, as in |
Latest revision as of 01:06, 14 June 2024
Let [math]X[/math] be a random variable with density function [math]f_X[/math]. The mean of [math]X[/math] is the value [math]\mu = \int xf_x(x)\,dx[/math]. Then [math]\mu[/math] gives an average value for [math]X[/math] (see Section \ref{sec 6.3}). Find [math]\mu[/math] if [math]X[/math] is distributed uniformly, normally, or exponentially, as in Exercise.