exercise:3dbebbe250: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with range <math>[-1,1]</math> and <math>f_X</math> its density function. Find <math>\mu(X)</math> and <math>\sigma^2(X)</math> if, for <math>|x| > 1</math>, <math>f_X(x) = 0</math>, and for <math>|x| <...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with range <math>[-1,1]</math> and
\newcommand{\NA}{{\rm NA}}
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with range <math>[-1,1]</math> and
<math>f_X</math> its density function.  Find <math>\mu(X)</math> and <math>\sigma^2(X)</math> if, for <math>|x|  >  1</math>,
<math>f_X</math> its density function.  Find <math>\mu(X)</math> and <math>\sigma^2(X)</math> if, for <math>|x|  >  1</math>,
<math>f_X(x) = 0</math>, and for <math>|x|  <  1</math>,
<math>f_X(x) = 0</math>, and for <math>|x|  <  1</math>,
<ul><li> <math>f_X(x) = (3/4)(1 - x^2)</math>.
<ul style="list-style-type:lower-alpha"><li> <math>f_X(x) = (3/4)(1 - x^2)</math>.
</li>
</li>
<li> <math>f_X(x) = (\pi/4)\cos(\pi x/2)</math>.
<li> <math>f_X(x) = (\pi/4)\cos(\pi x/2)</math>.

Latest revision as of 21:36, 14 June 2024

Let [math]X[/math] be a random variable with range [math][-1,1][/math] and [math]f_X[/math] its density function. Find [math]\mu(X)[/math] and [math]\sigma^2(X)[/math] if, for [math]|x| \gt 1[/math], [math]f_X(x) = 0[/math], and for [math]|x| \lt 1[/math],

  • [math]f_X(x) = (3/4)(1 - x^2)[/math].
  • [math]f_X(x) = (\pi/4)\cos(\pi x/2)[/math].
  • [math]f_X(x) = (x + 1)/2[/math].
  • [math]f_X(x) = (3/8)(x + 1)^2[/math].