exercise:C4bd624e06: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"><math> \newcommand{\NA}{{\rm NA}} \newcommand{\mat}[1]{{\bf#1}} \newcommand{\exref}[1]{\ref{##1}} \newcommand{\secstoprocess}{\all} \newcommand{\NA}{{\rm NA}} \newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function </math> F(x) = \left \{ \begin{array}{ll} 0, & \mbox{if <math>x < 0</math>}, \\ \sin^2(\pi x/2), & \mbox{if <math>0 \leq x \le...")
 
No edit summary
 
Line 1: Line 1:
<div class="d-none"><math>
Let <math>X</math> be a random variable with cumulative distribution function
\newcommand{\NA}{{\rm NA}}
<math display="block">
\newcommand{\mat}[1]{{\bf#1}}
\newcommand{\exref}[1]{\ref{##1}}
\newcommand{\secstoprocess}{\all}
\newcommand{\NA}{{\rm NA}}
\newcommand{\mathds}{\mathbb}</math></div> Let <math>X</math> be a random variable with cumulative distribution function
</math>
F(x) =  \left \{ \begin{array}{ll}
F(x) =  \left \{ \begin{array}{ll}
                           0, & \mbox{if <math>x  <  0</math>}, \\
                           0, & \mbox{if $x  <  0$}, \\
             \sin^2(\pi x/2), & \mbox{if <math>0 \leq x \leq 1</math>},  \\
             \sin^2(\pi x/2), & \mbox{if $0 \leq x \leq 1$},  \\
                           1, & \mbox{if <math>1  <  x</math>}.
                           1, & \mbox{if $1  <  x $}.
                 \end{array}
                 \end{array}
       \right.
       \right.


<math display="block">
</math>
<ul><li> What is the density function $f_X$ for <math>X</math>?
<ul style="list-style-type:lower-alpha"><li> What is the density function <math>f_X</math> for <math>X</math>?</li>
</li>
<li> What is the probability that <math>X  <  1/4</math>?</li>
<li> What is the probability that <math>X  <  1/4</math>?
</li>
</ul>
</ul>

Latest revision as of 00:07, 25 June 2024

Let [math]X[/math] be a random variable with cumulative distribution function

[[math]] F(x) = \left \{ \begin{array}{ll} 0, & \mbox{if $x \lt 0$}, \\ \sin^2(\pi x/2), & \mbox{if $0 \leq x \leq 1$}, \\ 1, & \mbox{if $1 \lt x $}. \end{array} \right. [[/math]]

  • What is the density function [math]f_X[/math] for [math]X[/math]?
  • What is the probability that [math]X \lt 1/4[/math]?