exercise:78a895eaf5: Difference between revisions

From Stochiki
(Created page with "<div class="d-none"> <math> \newcommand{\DS}{\displaystyle} \newcommand{\intbeta}{\lfloor \beta \rfloor} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal...")
 
No edit summary
Line 186: Line 186:
</math>
</math>
</div>
</div>
\label{EXO:portfolio}
 
In the Markowitz theory of portfolio selection~\cite{Mar52}, a portfolio may be identified to a vector <math>u \in \R^d</math> such that <math>u_j \ge 0</math> and <math>\sum_{j=1}^d u_j=1</math>. In this case, <math>u_j</math> represents the proportion of the portfolio invested in asset <math>j</math>. The vector of (random) returns of <math>d</math> assets is denoted by <math>X \in \R^d</math> and we assume that <math>X\sim \sg_d(1)</math> and <math>\E[XX^\top]=\Sigma</math> unknown.t
In the Markowitz theory of portfolio selection~\cite{Mar52}, a portfolio may be identified to a vector <math>u \in \R^d</math> such that <math>u_j \ge 0</math> and <math>\sum_{j=1}^d u_j=1</math>. In this case, <math>u_j</math> represents the proportion of the portfolio invested in asset <math>j</math>. The vector of (random) returns of <math>d</math> assets is denoted by <math>X \in \R^d</math> and we assume that <math>X\sim \sg_d(1)</math> and <math>\E[XX^\top]=\Sigma</math> unknown.t
In this theory, the two key characteristics of a portfolio <math>u</math> are it's ''reward'' <math>\mu(u)=\E[u^\top X]</math> and its ''risk'' <math>R(u)=\var{X^\top u}</math>. According to this theory one should fix a minimum reward <math>\lambda > 0</math> and choose the optimal portfolio
In this theory, the two key characteristics of a portfolio <math>u</math> are it's ''reward'' <math>\mu(u)=\E[u^\top X]</math> and its ''risk'' <math>R(u)=\var{X^\top u}</math>. According to this theory one should fix a minimum reward <math>\lambda > 0</math> and choose the optimal portfolio
Line 209: Line 209:


We assume throughout that <math>\log d \ll n \ll d</math>\,.
We assume throughout that <math>\log d \ll n \ll d</math>\,.
<ul><li> Show that for any portfolio <math>u</math>, it holds  
<ol><li> Show that for any portfolio <math>u</math>, it holds  


<math display="block">
<math display="block">
Line 234: Line 234:
find the smallest <math>\eps > 0</math> (up to multiplicative constant) such that we have <math>R(\tilde u) \le R(u^*)</math> with probability .99.
find the smallest <math>\eps > 0</math> (up to multiplicative constant) such that we have <math>R(\tilde u) \le R(u^*)</math> with probability .99.
</li>
</li>
</ul>
</ol>

Revision as of 02:51, 22 May 2024

[math] \newcommand{\DS}{\displaystyle} \newcommand{\intbeta}{\lfloor \beta \rfloor} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} \newcommand{\sg}{\mathsf{subG}} \newcommand{\subE}{\mathsf{subE}} \newcommand{\bA}{\mathbf{A}} \newcommand{\bB}{\mathbf{B}} \newcommand{\bC}{\mathbf{C}} \newcommand{\bD}{\mathbf{D}} \newcommand{\bE}{\mathbf{E}} \newcommand{\bF}{\mathbf{F}} \newcommand{\bG}{\mathbf{G}} \newcommand{\bH}{\mathbf{H}} \newcommand{\bI}{\mathbf{I}} \newcommand{\bJ}{\mathbf{J}} \newcommand{\bK}{\mathbf{K}} \newcommand{\bM}{\mathbf{M}} \newcommand{\bN}{\mathbf{N}} \newcommand{\bO}{\mathbf{O}} \newcommand{\bP}{\mathbf{P}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bQ}{\mathbf{Q}} \newcommand{\bS}{\mathbf{S}} \newcommand{\bT}{\mathbf{T}} \newcommand{\bU}{\mathbf{U}} \newcommand{\bV}{\mathbf{V}} \newcommand{\bX}{\mathbf{X}} \newcommand{\bY}{\mathbf{Y}} \newcommand{\bZ}{\mathbf{Z}} \newcommand{\bflambda}{\boldsymbol{\lambda}} \newcommand{\bftheta}{\boldsymbol{\theta}} \newcommand{\bfg}{\boldsymbol{g}} \newcommand{\bfy}{\boldsymbol{y}} \def\thetaphat{\hat{\bftheta}_\bp} \def\bflam{\boldsymbol{\lambda}} \def\Lam{\Lambda} \def\lam{\lambda} \def\bfpi{\boldsymbol{\pi}} \def\bfz{\boldsymbol{z}} \def\bfw{\boldsymbol{w}} \def\bfeta{\boldsymbol{\eta}} \newcommand{\R}{\mathrm{ I}\kern-0.18em\mathrm{ R}} \newcommand{\h}{\mathrm{ I}\kern-0.18em\mathrm{ H}} \newcommand{\K}{\mathrm{ I}\kern-0.18em\mathrm{ K}} \newcommand{\p}{\mathrm{ I}\kern-0.18em\mathrm{ P}} \newcommand{\E}{\mathrm{ I}\kern-0.18em\mathrm{ E}} %\newcommand{\Z}{\mathrm{ Z}\kern-0.26em\mathrm{ Z}} \newcommand{\1}{\mathrm{ 1}\kern-0.24em\mathrm{ I}} \newcommand{\N}{\mathrm{ I}\kern-0.18em\mathrm{ N}} \newcommand{\field}[1]{\mathbb{#1}} \newcommand{\q}{\field{Q}} \newcommand{\Z}{\field{Z}} \newcommand{\X}{\field{X}} \newcommand{\Y}{\field{Y}} \newcommand{\bbS}{\field{S}} \newcommand{\n}{\mathcal{N}} \newcommand{\x}{\mathcal{X}} \newcommand{\pp}{{\sf p}} \newcommand{\hh}{{\sf h}} \newcommand{\ff}{{\sf f}} \newcommand{\Bern}{\mathsf{Ber}} \newcommand{\Bin}{\mathsf{Bin}} \newcommand{\Lap}{\mathsf{Lap}} \newcommand{\tr}{\mathsf{Tr}} \newcommand{\phin}{\varphi_n} \newcommand{\phinb}{\overline \varphi_n(t)} \newcommand{\pn}{\p_{\kern-0.25em n}} \newcommand{\pnm}{\p_{\kern-0.25em n,m}} \newcommand{\psubm}{\p_{\kern-0.25em m}} \newcommand{\psubp}{\p_{\kern-0.25em p}} \newcommand{\cfi}{\cF_{\kern-0.25em \infty}} \newcommand{\e}{\mathrm{e}} \newcommand{\ic}{\mathrm{i}} \newcommand{\Leb}{\mathrm{Leb}_d} \newcommand{\Var}{\mathrm{Var}} \newcommand{\ddelta}{d_{\symdiffsmall}} \newcommand{\dsubh}{d_H} \newcommand{\indep}{\perp\kern-0.95em{\perp}} \newcommand{\supp}{\mathop{\mathrm{supp}}} \newcommand{\rank}{\mathop{\mathrm{rank}}} \newcommand{\vol}{\mathop{\mathrm{vol}}} \newcommand{\conv}{\mathop{\mathrm{conv}}} \newcommand{\card}{\mathop{\mathrm{card}}} \newcommand{\argmin}{\mathop{\mathrm{argmin}}} \newcommand{\argmax}{\mathop{\mathrm{argmax}}} \newcommand{\ud}{\mathrm{d}} \newcommand{\var}{\mathrm{var}} \newcommand{\re}{\mathrm{Re}} \newcommand{\MSE}{\mathsf{MSE}} \newcommand{\im}{\mathrm{Im}} \newcommand{\epr}{\hfill\hbox{\hskip 4pt\vrule width 5pt height 6pt depth 1.5pt}\vspace{0.5cm}\par} \newcommand{\bi}[1]{^{(#1)}} \newcommand{\eps}{\varepsilon} \newcommand{\Deq}{\stackrel{\mathcal{D}}{=}} \newcommand{\ubar}{\underbar} \newcommand{\Kbeta}{K_{\hspace{-0.3mm} \beta}} \newcommand{\crzero}[1]{\overset{r_0}{\underset{#1}{\longleftrightarrow}}} \newcommand{\hint}[1]{\texttt{[Hint:#1]}} \newcommand{\vp}{\vspace{.25cm}} \newcommand{\vm}{\vspace{.5cm}} \newcommand{\vg}{\vspace{1cm}} \newcommand{\vgneg}{\vspace{-1cm}} \newcommand{\vneg}{\vspace{-.5cm}} \newcommand{\vpneg}{\vspace{-.25cm}} \newcommand{\tp}{\ptsize{10}} \newcommand{\douzp}{\ptsize{12}} \newcommand{\np}{\ptsize{9}} \newcommand{\hp}{\ptsize{8}} \newcommand{\red}{\color{red}} \newcommand{\ndpr}[1]{{\textsf{\red[#1]}}} \newcommand\iid{i.i.d\@ifnextchar.{}{.\@\xspace} } \newcommand\MoveEqLeft[1][2]{\kern #1em & \kern -#1em} \newcommand{\leadeq}[2][4]{\MoveEqLeft[#1] #2 \nonumber} \newcommand{\leadeqnum}[2][4]{\MoveEqLeft[#1] #2} \newcommand\independent{\protect\mathpalette{\protect\independenT}{\perp}} \def\independenT#1#2{\mathrel{\rlap{$#1#2$}\mkern2mu{#1#2}}} \newcommand{\MIT}[1]{{\color{MITred} #1}} \newcommand{\dHyp}{\{-1,1\}^d} \newcommand{\thetahard}{\hat \theta^{hrd}} \newcommand{\thetasoft}{\hat \theta^{sft}} \newcommand{\thetabic}{\hat \theta^{bic}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetahard}{\hat \theta^{hrd}} \newcommand{\thetasoft}{\hat \theta^{sft}} \newcommand{\thetabic}{\hat \theta^{bic}} \newcommand{\thetalasso}{\hat \theta^{\cL}} \newcommand{\thetaslope}{\hat \theta^{\cS}} \newcommand{\thetals}{\hat \theta^{ls}} \newcommand{\thetalsm}{\tilde \theta^{ls_X}} \newcommand{\thetaridge}{\hat\theta^{\mathrm{ridge}}_\tau} \newcommand{\thetalsK}{\hat \theta^{ls}_K} \newcommand{\muls}{\hat \mu^{ls}} [/math]

In the Markowitz theory of portfolio selection~\cite{Mar52}, a portfolio may be identified to a vector [math]u \in \R^d[/math] such that [math]u_j \ge 0[/math] and [math]\sum_{j=1}^d u_j=1[/math]. In this case, [math]u_j[/math] represents the proportion of the portfolio invested in asset [math]j[/math]. The vector of (random) returns of [math]d[/math] assets is denoted by [math]X \in \R^d[/math] and we assume that [math]X\sim \sg_d(1)[/math] and [math]\E[XX^\top]=\Sigma[/math] unknown.t In this theory, the two key characteristics of a portfolio [math]u[/math] are it's reward [math]\mu(u)=\E[u^\top X][/math] and its risk [math]R(u)=\var{X^\top u}[/math]. According to this theory one should fix a minimum reward [math]\lambda \gt 0[/math] and choose the optimal portfolio

[[math]] u^*=\argmin_{u\,: \mu(u) \ge \lambda} R(u) [[/math]]

when a solution exists for a given. It is the portfolio that has minimum risk among all portfolios with reward at least [math]\lambda[/math], provided such portfolios exist. In practice, the distribution of [math]X[/math] is unknown. Assume that we observe [math]n[/math] independent copies [math]X_1, \ldots, X_n[/math] of [math]X[/math] and use them to compute the following estimators of [math]\mu(u)[/math] and [math]R(u)[/math] respectively:

[[math]] \begin{align*} \hat \mu(u)&=\bar X^\top u =\frac{1}{n}\sum_{i=1}^n X_i^\top u\,, \\ \hat R(u)&= u^\top \hat \Sigma u, \quad \hat \Sigma = \frac{1}{n-1}\sum_{i=1}^n (X_i-\bar X)(X_i -\bar X)^\top\,. \end{align*} [[/math]]

We use the following estimated portfolio:

[[math]] \hat u=\argmin_{u\,: \hat \mu(u) \ge \lambda} \hat R(u) [[/math]]

We assume throughout that [math]\log d \ll n \ll d[/math]\,.

  1. Show that for any portfolio [math]u[/math], it holds
    [[math]] \big|\hat \mu(u) - \mu(u)\big| \lesssim \frac{1}{\sqrt{n}}\,, [[/math]]
    and
    [[math]] \big|\hat R(u) - R(u)\big| \lesssim \frac{1}{\sqrt{n}}\,. [[/math]]
  2. Show that
    [[math]] \hat R(\hat u) - R(\hat u) \lesssim \sqrt{\frac{\log d}{n}}\,, [[/math]]
    with probability .99.
  3. Define the estimator [math]\tilde u[/math] by:
    [[math]] \tilde u=\argmin_{u\,: \hat \mu(u) \ge \lambda- \eps} \hat R(u) [[/math]]
    find the smallest [math]\eps \gt 0[/math] (up to multiplicative constant) such that we have [math]R(\tilde u) \le R(u^*)[/math] with probability .99.